K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2020

\(P=\left(\frac{1}{2a-b}+\frac{3b}{b^2-4a^2}-\frac{2}{2a+b}\right):\left(\frac{4a^2+b}{4a^2-b}+1\right)\)

\(=\left[\frac{2a+b}{\left(2a-b\right)\left(2a+b\right)}-\frac{3b}{\left(2a+b\right)\left(2a-b\right)}-\frac{2\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\right]:\frac{4a^2+b+4a^2-b}{4a^2-b}\)

\(=\frac{2a+b-3b-4a+2b}{4a^2-b}\cdot\frac{4a^2-b}{8a^2}\)

\(=\frac{-2a}{8a^2}\)

\(a< 0\Rightarrow-2a>0\Rightarrow\frac{-2a}{8a^2}>0\left(8a^2\ge0\right)\)

=> ĐFCM

31 tháng 3 2020

\(\Leftrightarrow\) \(\frac{\left(x-z\right)-\left(x-y\right)}{\left(x-y\right)\left(x-z\right)}\)\(+\frac{\left(y-x\right)-\left(y-z\right)}{\left(y-z\right)\left(y-x\right)}+\frac{\left(z-y\right)-\left(z-x\right)}{\left(z-x\right)\left(z-y\right)}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)

\(\Leftrightarrow\)\(\frac{1}{x-y}-\frac{1}{x-z}+\frac{1}{y-z}-\frac{1}{y-x}+\frac{1}{z-x}-\frac{1}{z-y}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)

\(\Leftrightarrow\)\(\frac{1}{x-y}+\frac{1}{z-x}+\frac{1}{y-z}+\frac{1}{x-y}+\frac{1}{z-x}+\frac{1}{y-z}=\frac{2}{x-y}+\frac{2}{y-z}+\frac{2}{z-x}\)

tự lm nốt ik

30 tháng 3 2020

\(ĐKXĐ:x\ne\frac{3}{2}\)

\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3}\)

\(\Leftrightarrow\frac{x^2+4x+4-2x+3}{2x-3}=\frac{x^2+10}{2x-3}\)

\(\Leftrightarrow x^2+2x+7=x^2+10\)

\(\Leftrightarrow2x=3\)

\(\Leftrightarrow x=\frac{3}{2}\left(KTMĐKXĐ\right)\)

Vậy phương trình vô nghiệm

31 tháng 3 2020

ĐKXĐ: x khác 3/2

\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3}\)

<=> \(\frac{x^2+4x+4}{2x-3}-1=\frac{x^2+10}{2x-3}\)

<=> x^2 + 4x + 4 - 2x + 3 = x^2 + 10

<=> x^2 + 4x + 4 - 2x + 3 - x^2 - 10 = 0

<=> 2x - 3 = 0

<=> 2x = 0 + 3

<=> 2x = 3

<=> x = 3 (ktmdk)

=> pt no

31 tháng 3 2020

\(\frac{1}{\left(x+1\right)\left(x+2\right)}-\frac{2}{\left(x+2\right)^2}+\frac{1}{\left(x+2\right)\left(x+3\right)}\)

\(=\frac{\left(x+2\right)\left(x+3\right)-2\left(x+1\right)\left(x+3\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

\(=\frac{\left(x+3\right)\left(x+2-2x-2\right)+x^2+2x+x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

\(=\frac{\left(x+3\right)\left(-x\right)+x^2+3x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

\(=\frac{-x^2-3x+x^2+3x+2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}=\frac{2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

1 tháng 4 2020

ĐKXD: x\(\ne\)-1,-2,-3

Ta có

\(\frac{1}{\left(x+1\right)\left(x+2\right)}\)-\(\frac{2}{\left(x+2\right)^2}\)+\(\frac{1}{\left(x+2\right)\left(x+3\right)}\)

=\(\frac{\left(x+2\right)\left(x+3\right)-2\left(x+1\right)\left(x+3\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

=\(\frac{\left(x+2\right)\left(x+3+x+1\right)-2\left(x^2+4x+3\right)}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

=\(\frac{\left(x+2\right)\left(2x+4\right)-2x^2-8x-6}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

=\(\frac{2x^2+8x+8-2x^2-8x-6}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

=\(\frac{2}{\left(x+1\right)\left(x+2\right)^2\left(x+3\right)}\)

Chúc bạn học tốt

30 tháng 3 2020

Áp dụng BĐT quen thuộc sau:\(\frac{4}{a+b}\le\frac{1}{a}+\frac{1}{b}\)

\(\frac{16}{2x+y+z}\le\frac{4}{x+y}+\frac{4}{x+z}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}=\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\)

Tương tự:

\(\frac{16}{x+2y+z}\le\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\)

\(\frac{16}{x+y+2z}\le\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\)

Khi đó:\(16VT\le4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=16\)

\(\Rightarrow VT\le1\)

30 tháng 3 2020

M=1 khi và chỉ khi abc=1

30 tháng 3 2020

Áp dụng giả thiết từ đề bài :

\(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(\Leftrightarrow M=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)

\(\Leftrightarrow M=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}\)

\(\Leftrightarrow M=\frac{1+b+bc}{b+1+bc}=1\)

Vậy M = 1

30 tháng 3 2020

E ở đâu thế bạn ?

30 tháng 3 2020

Đề chưa cho vẽ điểm E ở chỗ nào ? sai đề bài rồi em ơi !

31 tháng 3 2020

\(x=1-\sqrt{2}\)

=> \(1-x=\sqrt{2}\)

<=>\(1-2x+x^2=2\)

<=> \(x^2-2x-1=0\)

Ta có \(A=2x^5+x^3-3x^2+x-1\)

=\(2x^3\left(x^2-2x-1\right)+4x^2\left(x^2-2x-1\right)+11x\left(x^2-2x-1\right)+23\left(x^2-2x-1\right)+58x+22\)

\(=58x+22\)

=\(58\left(1-\sqrt{2}\right)+22=80-58\sqrt{2}\)

Vậy \(A=80-58\sqrt{2}\)