Các cậu giúp bài này nhé, thầy tớ ra bài này khó quá. cảm ơn các cậu
Tìm x để các biểu thức sau có nghĩa
a) \(\sqrt{3x-2}-\frac{-1}{\sqrt{4-x}}\)
b) \(\frac{3}{\sqrt{2x-1}-2}\)
c) \(\frac{-2}{\sqrt{x^2}-4x^2+4}-\sqrt{-x-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có xy + yz + zx = 1
=> 1 + x2 = x2 + xy + yz + zx
1 + x2 = (x + y)(y + z)
Tương tự ta có:
1 + y2 = (y + x)(y + z)
1 + z2 = (z + x)(z + y)
Thay vào P, ta được:
\(P=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)
\(P=xy+yz+zx+xy+yz+zx\)
\(P=2\left(xy+yz+zx\right)=2\)
Vậy P = 2
a) \(\frac{1}{x}+\frac{1}{y}=2\Leftrightarrow\frac{x+y}{xy}=2\)
\(\Leftrightarrow x+y=2xy\Leftrightarrow4xy=2x+2y\)
\(\Leftrightarrow4xy-2x-2y=0\Leftrightarrow2x\left(2y-1\right)-\left(2y-1\right)=1\)
\(\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=1=1.1=\left(-1\right).\left(-1\right)\)
\(TH1:\hept{\begin{cases}2x-1=1\\2y-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)
\(TH1:\hept{\begin{cases}2x-1=-1\\2y-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\left(L\right)\)
Vậy x = y = 1
b) A là số chính phương nên ta đặt \(n^2+2n+8=a^2\)
\(\Leftrightarrow\left(n+1\right)^2+7=a^2\)
\(\Leftrightarrow a^2-\left(n+1\right)^2=7\)
\(\Leftrightarrow\left(a-n-1\right)\left(a+n+1\right)=7=1.7=7.1\)
\(=\left(-1\right).\left(-7\right)=\left(-7\right).\left(-1\right)\)
Lập bảng:
\(a-n-1\) | \(1\) | \(7\) | \(-1\) | \(-7\) |
\(a+n+1\) | \(7\) | \(1\) | \(-7\) | \(-1\) |
\(a-n\) | \(2\) | \(8\) | \(0\) | \(-6\) |
\(a+n\) | \(6\) | \(0\) | \(-8\) | \(-2\) |
\(a\) | \(4\) | \(4\) | \(-4\) | \(-4\) |
\(n\) | \(2\) | \(-4\) | \(-4\) | \(2\) |
Mà n là số tự nhiên nên n = 2.
Xét \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{a+b+c}{abc}\right)}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)
\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)(đpcm)
\(\frac{1}{\sqrt{X}}\)+\(\sqrt{2-\frac{1}{y}}\)=2; \(\frac{1}{\sqrt{Y}}\)+\(\sqrt{2-\frac{1}{x}}\)=2
Câu b: Tam giác AHB vuông tại H, đường cao AH
=> AD.BD=DH2
Tương tự: AE.EC=HE2
=> AD.BD+AE.EC=DH2+HE2
=DE2 (Pytago)
=AH2 (ADHE là hình chữ nhật vì có 3 góc vuông)
Có \(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\left(x+y\right)^2\ge4\) (Vì xy = 1)
\(\Rightarrow|x+y|\ge2\)
Dấu "=" xả ra khi \(\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\)
Xét x = y = 1 ta được:
\(M=\frac{3}{4}+\left(\sqrt{5.1^{2016}+4.1}-2\right)^{2017}-\frac{1^{2015}}{1^{2016}}\)
\(M=\frac{3}{4}\)
Xét x = y = -1 ta được:
\(M=\frac{3}{4}+\left(\sqrt{5.\left(-1\right)^{2016}+4.\left(-1\right)}\right)^{2017}-\frac{\left(-1\right)^{2015}}{\left(-1\right)^{2016}}\)
\(M=\frac{7}{4}+3^{2017}\)
Vậy với \(xy=1\)và \(|x+y|\)đạt giá trị nhỏ nhất thì M nhận 2 giá trị là \(\orbr{\begin{cases}M=\frac{3}{4}\\M=\frac{7}{4}+3^{2017}\end{cases}}\)
Có |x+y| lớn hơn hoặc bằng
|x|+|y| dấu bằng sảy ra <=>
xy lớn hơn hoặc bằng 0
mà xy=1 => |x+y|=|x|+|y| (1)
Ta lại có:|x|+|y|-2\(\sqrt{xy}=\)\(\left(\sqrt{x}-\sqrt{y}\right)^2\)Lớn hơn hoặc bằng 0
=>|x|+|y| lớn hơn hoặc bằng \(2\sqrt{xy}=2\left(2\right)\)
Từ (1) và (2)
=>|x+y| lớn hơn hoặc bằng 2
=>MIN |x+y|=2
Dấu bằng sảy ra
<=>|x+y|=2
Hay |x|+|y|=\(2\sqrt{xy}\)
=>\(\left(\sqrt{x}-\sqrt{y}\right)^2=0\)
=>\(\sqrt{x}=\sqrt{y}\Rightarrow x=y\)
Mà |x+y|=2
TH1: x+y=2=>x=y=1
Thay vào M ta tính được M=3/4
TH2:x+y=-2 => x=y=-1
Thay vào M ta được
M=3/4
Vậy: M=3/4
a.\(DK:\frac{2}{3}\le x< 4\)
b.\(DK:x>\frac{1}{2},x\ne\frac{5}{2}\)
c.\(DK:x\le-3\)
Bạn MaiLink ơi, bạn có thể ghi rõ ra các bước làm được không? mình không hiểu lắm. cảm ơn bạn