Viết đoạn văn nêu cảm xúc của mình về bài thơ 8 chữ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(A=\left(\frac{x-4}{\sqrt{x}-2}+\frac{x\sqrt{x}-8}{4-x}\right):\frac{\left(\sqrt{x}-2\right)^2+2\sqrt{x}}{\sqrt{x}+2}\)
\(=\left(\frac{x-4}{\sqrt{x}-2}-\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{x-4\sqrt{x}+4+2\sqrt{x}}{\sqrt{x}+2}\)
\(=\left(\sqrt{x}+2-\frac{x+2\sqrt{x}+4}{\sqrt{x}+2}\right):\frac{x-2\sqrt{x}+4}{\sqrt{x}+2}\)
\(=\frac{\left(\sqrt{x}+2\right)^2-x-2\sqrt{x}-4}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+2}{x-2\sqrt{x}+4}=\frac{x+4\sqrt{x}+4-x-2\sqrt{x}-4}{x-2\sqrt{x}+4}=\frac{2\sqrt{x}}{x-2\sqrt{x}+4}\)
b: \(A-1=\frac{2\sqrt{x}}{x-2\sqrt{x}+4}-1=\frac{2\sqrt{x}-x+2\sqrt{x}-4}{x-2\sqrt{x}+4}=\frac{-x+4\sqrt{x}-4}{x-2\sqrt{x}+1+3}\)
\(=-\frac{\left(x-4\sqrt{x}+4\right)}{\left(\sqrt{x}-1\right)^2+3}=\frac{-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-1\right)^2+3}<0\forall x\) thỏa mãn ĐKXĐ
=>A<1
c: Ta có: \(2\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ
\(x-2\sqrt{x}+4=\left(\sqrt{x}-1\right)^2+3\ge3\forall x\)
=>\(A=\frac{2\sqrt{x}}{x-2\sqrt{x}+4}\ge0\forall x\) thỏa mãn ĐKXĐ
=>0<=A<1
Để A là số nguyên thì A=0
=>x=0(nhận)

Bài 1:
\(A=\sqrt{3+\sqrt{5+2\sqrt3}}+\sqrt{3-\sqrt{5+2\sqrt3}}\)
=>\(A^2=3+\sqrt{5+2\sqrt3}+3-\sqrt{5+2\sqrt3}+2\cdot\sqrt{3^2-\left(5+2\sqrt3\right)}\)
=>\(A^2=6+2\cdot\sqrt{9-5-2\sqrt3}=6+2\cdot\sqrt{4-2\sqrt3}\)
=>\(A^2=6+2\sqrt{\left(\sqrt3-1\right)^2}=6+2\left(\sqrt3-1\right)=4+2\sqrt3=\left(\sqrt3+1\right)^2\)
=>\(A=\sqrt3+1\)
Bài 63:
Đặt \(A=\sqrt{4+\sqrt3}+\sqrt{4-\sqrt3}\)
=>\(A^2=4+\sqrt3+4-\sqrt3+2\cdot\sqrt{4^2-3}=8+2\sqrt{13}\)
=>\(A=\sqrt{8+2\sqrt{13}}\)
\(N=\frac{\sqrt{4+\sqrt3}+\sqrt{4-\sqrt3}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt2}\)
\(=\frac{\sqrt{8+2\sqrt{13}}}{\sqrt{4+\sqrt{13}}}+\sqrt{25-2\cdot5\cdot\sqrt2+2}\)
\(=\sqrt2+\sqrt{\left(5-\sqrt2\right)^2}=\sqrt2+5-\sqrt2=5\)

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

4: Sửa đề: \(x=\sqrt[3]{3+2\sqrt2}-\sqrt[3]{3-2\sqrt2}\)
=>\(x^3=3+2\sqrt2-\left(3-2\sqrt2\right)+3\cdot x\cdot\sqrt[3]{\left(3+2\sqrt2\right)\left(3-2\sqrt2\right)}\)
=>\(x^3=6+3\cdot x\cdot1=3x+6\)
\(y=\sqrt[3]{17+12\sqrt2}-\sqrt[3]{17-12\sqrt2}\)
=>\(y^3=17+12\sqrt2-\left(17-12\sqrt2\right)-3\cdot y\cdot\sqrt[3]{\left(17+12\sqrt2\right)\left(17-12\sqrt2\right)}\)
=>\(y^3=34-3y\)
\(H=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)\)
\(=\left(x-y\right)\left(x^2-2xy+y^2+3xy+3\right)=\left(x-y\right)\left(x^2+xy+y^2+3\right)\)
\(=\left(x^3-y^3\right)+3\left(x-y\right)\)
=(3x+6-34+3y)+3x-3y
=3x+3y+3x-3y-28
=6x-28
Bài 3:
a: \(A=\sqrt{13+30\cdot\sqrt{2+\sqrt{9+4\sqrt2}}}\)
\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{8+2\cdot2\sqrt2\cdot1+1}}}\)
\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{\left(2\sqrt2+1\right)^2}}}\)
\(=\sqrt{13+30\cdot\sqrt{2+\left(2\sqrt2+1\right)}}\)
\(=\sqrt{13+30\cdot\sqrt{2+2\sqrt2+1}}\)
\(=\sqrt{13+30\cdot\sqrt{\left(\sqrt2+1\right)^2}}\)
\(=\sqrt{13+30\cdot\left(\sqrt2+1\right)}=\sqrt{43+30\sqrt2}\)
\(=\sqrt{25+2\cdot5\cdot3\sqrt2+18}=\sqrt{\left(5+3\sqrt2\right)^2}=5+3\sqrt2\)
b: \(B=\frac{3+\sqrt5}{2\sqrt2+\sqrt{3+\sqrt5}}+\frac{3-\sqrt5}{2\sqrt2-\sqrt{3-\sqrt5}}\)
\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{6+2\sqrt5}}+\frac{3-\sqrt5}{4-\sqrt{6-2\sqrt5}}\right)\)
\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{\left(\sqrt5+1\right)^2}}+\frac{3-\sqrt5}{4-\sqrt{\left(\sqrt5-1\right)^2}}\right)\)
\(=\sqrt2\left(\frac{3+\sqrt5}{4+\left(\sqrt5+1\right)^{}}+\frac{3-\sqrt5}{4-\left(\sqrt5-1\right)^{}}\right)\)
\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt5+1^{}}+\frac{3-\sqrt5}{4-\sqrt5+1^{}}\right)=\sqrt2\left(\frac{3+\sqrt5}{5+\sqrt5^{}}+\frac{3-\sqrt5}{5-\sqrt5^{}}\right)\)
\(=\frac{1}{\sqrt2}\left(\frac{2\left(3+\sqrt5\right)}{5+\sqrt5}+\frac{2\left(3-\sqrt5\right)}{5-\sqrt5}\right)=\frac{1}{\sqrt2}\cdot\left(\frac{6+2\sqrt5}{5+\sqrt5}+\frac{6-2\sqrt5}{5-\sqrt5}\right)\)
\(=\frac{1}{\sqrt2}\left(\frac{\left(\sqrt5+1\right)^2}{\sqrt5\left(\sqrt5+1\right)}+\frac{\left(\sqrt5-1\right)^2}{\sqrt5\left(\sqrt5-1\right)}\right)=\frac{1}{\sqrt2}\cdot\frac{\sqrt5+1+\sqrt5-1}{\sqrt5}=\frac{1}{\sqrt2}\cdot2=\sqrt2\)
c: \(C=\sqrt{4+\sqrt{10+2\sqrt5}}+\sqrt{4-\sqrt{10+2\sqrt5}}\)
=>\(C^2=4+\sqrt{10+2\sqrt5}+4-\sqrt{10+2\sqrt5}+2\cdot\sqrt{4^2-\left(10+2\sqrt5\right)}\)
=>\(C^2=8+2\cdot\sqrt{16-10-2\sqrt5}=8+2\cdot\sqrt{6-2\sqrt5}\)
=>\(C^2=8+2\cdot\left(\sqrt5-1\right)=6+2\sqrt5=\left(\sqrt5+1\right)^2\)
=>\(C=\sqrt5+1\)
f: \(F=\sqrt[3]{26+15\sqrt3}-\sqrt[3]{26-15\sqrt3}\)
\(=\sqrt[3]{2^3+3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2+3\sqrt3}-\sqrt[3]{2^3-3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2-3\sqrt3}\)
\(=\sqrt[3]{\left(2+\sqrt3\right)^3}-\sqrt[3]{\left(2-\sqrt3\right)^3}=2+\sqrt3-\left(2-\sqrt3\right)=2\sqrt3\)

4: Sửa đề: \(x=\sqrt[3]{3+2\sqrt2}-\sqrt[3]{3-2\sqrt2}\)
=>\(x^3=3+2\sqrt2-\left(3-2\sqrt2\right)+3\cdot x\cdot\sqrt[3]{\left(3+2\sqrt2\right)\left(3-2\sqrt2\right)}\)
=>\(x^3=6+3\cdot x\cdot1=3x+6\)
\(y=\sqrt[3]{17+12\sqrt2}-\sqrt[3]{17-12\sqrt2}\)
=>\(y^3=17+12\sqrt2-\left(17-12\sqrt2\right)-3\cdot y\cdot\sqrt[3]{\left(17+12\sqrt2\right)\left(17-12\sqrt2\right)}\)
=>\(y^3=34-3y\)
\(H=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)\)
\(=\left(x-y\right)\left(x^2-2xy+y^2+3xy+3\right)=\left(x-y\right)\left(x^2+xy+y^2+3\right)\)
\(=\left(x^3-y^3\right)+3\left(x-y\right)\)
=(3x+6-34+3y)+3x-3y
=3x+3y+3x-3y-28
=6x-28
Bài 3:
a: \(A=\sqrt{13+30\cdot\sqrt{2+\sqrt{9+4\sqrt2}}}\)
\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{8+2\cdot2\sqrt2\cdot1+1}}}\)
\(=\sqrt{13+30\cdot\sqrt{2+\sqrt{\left(2\sqrt2+1\right)^2}}}\)
\(=\sqrt{13+30\cdot\sqrt{2+\left(2\sqrt2+1\right)}}\)
\(=\sqrt{13+30\cdot\sqrt{2+2\sqrt2+1}}\)
\(=\sqrt{13+30\cdot\sqrt{\left(\sqrt2+1\right)^2}}\)
\(=\sqrt{13+30\cdot\left(\sqrt2+1\right)}=\sqrt{43+30\sqrt2}\)
\(=\sqrt{25+2\cdot5\cdot3\sqrt2+18}=\sqrt{\left(5+3\sqrt2\right)^2}=5+3\sqrt2\)
b: \(B=\frac{3+\sqrt5}{2\sqrt2+\sqrt{3+\sqrt5}}+\frac{3-\sqrt5}{2\sqrt2-\sqrt{3-\sqrt5}}\)
\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{6+2\sqrt5}}+\frac{3-\sqrt5}{4-\sqrt{6-2\sqrt5}}\right)\)
\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt{\left(\sqrt5+1\right)^2}}+\frac{3-\sqrt5}{4-\sqrt{\left(\sqrt5-1\right)^2}}\right)\)
\(=\sqrt2\left(\frac{3+\sqrt5}{4+\left(\sqrt5+1\right)^{}}+\frac{3-\sqrt5}{4-\left(\sqrt5-1\right)^{}}\right)\)
\(=\sqrt2\left(\frac{3+\sqrt5}{4+\sqrt5+1^{}}+\frac{3-\sqrt5}{4-\sqrt5+1^{}}\right)=\sqrt2\left(\frac{3+\sqrt5}{5+\sqrt5^{}}+\frac{3-\sqrt5}{5-\sqrt5^{}}\right)\)
\(=\frac{1}{\sqrt2}\left(\frac{2\left(3+\sqrt5\right)}{5+\sqrt5}+\frac{2\left(3-\sqrt5\right)}{5-\sqrt5}\right)=\frac{1}{\sqrt2}\cdot\left(\frac{6+2\sqrt5}{5+\sqrt5}+\frac{6-2\sqrt5}{5-\sqrt5}\right)\)
\(=\frac{1}{\sqrt2}\left(\frac{\left(\sqrt5+1\right)^2}{\sqrt5\left(\sqrt5+1\right)}+\frac{\left(\sqrt5-1\right)^2}{\sqrt5\left(\sqrt5-1\right)}\right)=\frac{1}{\sqrt2}\cdot\frac{\sqrt5+1+\sqrt5-1}{\sqrt5}=\frac{1}{\sqrt2}\cdot2=\sqrt2\)
c: \(C=\sqrt{4+\sqrt{10+2\sqrt5}}+\sqrt{4-\sqrt{10+2\sqrt5}}\)
=>\(C^2=4+\sqrt{10+2\sqrt5}+4-\sqrt{10+2\sqrt5}+2\cdot\sqrt{4^2-\left(10+2\sqrt5\right)}\)
=>\(C^2=8+2\cdot\sqrt{16-10-2\sqrt5}=8+2\cdot\sqrt{6-2\sqrt5}\)
=>\(C^2=8+2\cdot\left(\sqrt5-1\right)=6+2\sqrt5=\left(\sqrt5+1\right)^2\)
=>\(C=\sqrt5+1\)
f: \(F=\sqrt[3]{26+15\sqrt3}-\sqrt[3]{26-15\sqrt3}\)
\(=\sqrt[3]{2^3+3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2+3\sqrt3}-\sqrt[3]{2^3-3\cdot2^2\cdot\sqrt3+3\cdot2\cdot\left(\sqrt3\right)^2-3\sqrt3}\)
\(=\sqrt[3]{\left(2+\sqrt3\right)^3}-\sqrt[3]{\left(2-\sqrt3\right)^3}=2+\sqrt3-\left(2-\sqrt3\right)=2\sqrt3\)

Which = có dấu phẩy (,) (thông tin bổ sung)
That = không có dấu phẩy (,) (thông tin cần thiết)
- Which: Dùng trong mệnh đề quan hệ không xác định (non-defining relative clause). Mệnh đề này cung cấp thông tin thêm, không cần thiết để xác định danh từ. Nó luôn được ngăn cách bởi dấu phẩy (,).
- Ví dụ: My car, which is red, needs washing. (Xe của tớ, cái mà màu đỏ, cần rửa.)
- That: Dùng trong mệnh đề quan hệ xác định (defining relative clause). Mệnh đề này cung cấp thông tin cần thiết để xác định danh từ. Nó không được ngăn cách bởi dấu phẩy (, ).
- Ví dụ: The car that is parked over there is mine. (Chiếc xe đang đậu đằng kia là của tớ.) -Sưu tầm trên internet

Việc sử dụng các thiết bị có bộ xử lý thông tin (như máy tính, điện thoại thông minh, máy tính bảng) đã trở nên vô cùng phổ biến và gần như không thể thiếu trong học tập và đời sống hiện đại. Chúng mang lại rất nhiều lợi ích nhưng cũng tiềm ẩn không ít rủi ro.
Lợi ích: Khả năng tiếp cận thông tin và tri thức khổng lồ
Một trong những lợi ích lớn nhất của việc sử dụng thiết bị có bộ xử lý thông tin là khả năng tiếp cận thông tin và tri thức gần như vô hạn. Chỉ với một vài cú nhấp chuột hoặc chạm màn hình, chúng ta có thể:
- Tìm kiếm thông tin: Tra cứu bất kỳ chủ đề nào, từ lịch sử, khoa học đến tin tức thời sự, một cách nhanh chóng và dễ dàng.
- Học hỏi: Tham gia các khóa học trực tuyến, xem video bài giảng, đọc sách điện tử, hoặc tìm hiểu các kỹ năng mới mọi lúc mọi nơi.
- Kết nối: Giao lưu, học hỏi từ các chuyên gia, giáo viên, hoặc bạn bè trên khắp thế giới thông qua các nền tảng trực tuyến.
- Cập nhật kiến thức: Luôn nắm bắt được những xu hướng, phát minh mới nhất trong mọi lĩnh vực.
Nhờ lợi ích này, việc học tập trở nên linh hoạt, cá nhân hóa và hiệu quả hơn rất nhiều, đồng thời giúp mỗi cá nhân mở rộng kiến thức, nâng cao năng lực trong cuộc sống hàng ngày.
Rủi ro: Nguy cơ nghiện và ảnh hưởng sức khỏe
Tuy nhiên, song hành với lợi ích là những rủi ro đáng kể, đặc biệt là nguy cơ nghiện thiết bị và những ảnh hưởng tiêu cực đến sức khỏe.
- Nghiện thiết bị: Việc dành quá nhiều thời gian cho màn hình có thể dẫn đến chứng nghiện internet, nghiện trò chơi điện tử hoặc nghiện mạng xã hội. Người nghiện có xu hướng bỏ bê học tập, công việc, các mối quan hệ xã hội và các hoạt động thể chất. Điều này ảnh hưởng nghiêm trọng đến sự phát triển toàn diện của cá nhân.
- Ảnh hưởng sức khỏe:
- Thị lực: Nhìn màn hình quá lâu dễ gây mỏi mắt, khô mắt, thậm chí làm tăng nguy cơ cận thị, đặc biệt ở trẻ em.
- Hệ xương khớp: Tư thế ngồi không đúng khi sử dụng máy tính, điện thoại trong thời gian dài có thể dẫn đến các vấn đề về cột sống, vai, gáy và cổ tay.
- Giấc ngủ: Ánh sáng xanh từ màn hình có thể làm rối loạn nhịp sinh học, gây khó ngủ và mất ngủ.
- Tâm lý: Tiếp xúc quá nhiều với thông tin tiêu cực, áp lực từ mạng xã hội hoặc so sánh bản thân với người khác có thể dẫn đến căng thẳng, lo âu, trầm cảm.
Để tối đa hóa lợi ích và giảm thiểu rủi ro, điều quan trọng là chúng ta phải sử dụng các thiết bị này một cách có ý thức và điều độ.
Bạn có nghĩ rằng việc tự kiểm soát thời gian sử dụng thiết bị là thách thức lớn nhất không?

Olm chào em, khi đăng câu hỏi lên diễn đàn Olm, em cần đăng đầy đủ nội dung và yêu cầu, để nhận được sự trợ giúp tốt nhất từ cộng đồng Olm em nhé. Cảm ơn em đã đồng hành cùng Olm. Chúc em học tập hiệu quả và vui vẻ cùng Olm.
Trong thế giới muôn vàn hình thái thơ ca, bài thơ tám chữ luôn mang một vẻ đẹp riêng, một sự cân bằng hài hòa giữa độ dài vừa đủ để kể một câu chuyện, gửi gắm một thông điệp, mà vẫn giữ được sự cô đọng, tinh tế. Khi đọc một bài thơ tám chữ, tôi thường nhận thấy sự uyển chuyển trong từng dòng, như một dòng chảy nhẹ nhàng nhưng ẩn chứa những tầng ý nghĩa sâu xa. Không quá dài để trở nên lê thê, cũng không quá ngắn để thiếu vắng cảm xúc, mỗi câu tám chữ như một nhịp điệu đều đặn, dẫn dắt người đọc đi qua từng khung cảnh, từng trạng thái cảm xúc mà tác giả muốn thể hiện. Dù là về tình yêu, thiên nhiên, hay những suy tư về cuộc đời, sự sắp xếp khéo léo của ngôn từ trong cấu trúc tám chữ thường tạo nên một âm hưởng đặc biệt, dễ đi vào lòng người và đọng lại thật lâu.