Kho cần phân chia rổ hàng cho các tài xế. Nếu mỗi rổ 3 tài xế thì dư 4 tài xế; còn nếu xếp 4 tài xế 1 rổ thì dư 1 rổ. Hỏi hiện tại trong kho có bao nhiêu rổ hàng?
a 6
b 8
c 9
d 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔABH~ΔCBA
=>\(\dfrac{BA}{BC}=\dfrac{BH}{BA}\)
=>\(BA^2=BH\cdot BC\)
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét ΔCAB có CD là phân giác
nên \(\dfrac{AD}{AC}=\dfrac{BD}{BC}\)
=>\(\dfrac{AD}{8}=\dfrac{BD}{10}\)
=>\(\dfrac{AD}{4}=\dfrac{BD}{5}\)
mà AD+BD=AB=6cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{4}=\dfrac{BD}{5}=\dfrac{AD+BD}{4+5}=\dfrac{6}{9}=\dfrac{2}{3}\)
=>\(AD=4\cdot\dfrac{2}{3}=\dfrac{8}{3}\left(cm\right);BD=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\left(cm\right)\)
C đúng, quy luật: \(42=7.6\); \(54=9.6\); \(66=11.6\) ; \(78=13.6\) ; \(90=15.6\)
a: Xét ΔEHB vuông tại E và ΔDHC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔEHB~ΔDHC
b: Xét ΔABC có
BD,CE là các đường cao
DB cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại F
Xét ΔBFH vuông tại Fvà ΔBDC vuông tại D có
\(\widehat{FBH}\) chung
Do đó: ΔBFH~ΔBDC
=>\(\dfrac{BF}{BD}=\dfrac{BH}{BC}\)
=>\(BF\cdot BC=BH\cdot BD\)
c: Xét ΔCFH vuông tại F và ΔCEB vuông tại E có
\(\widehat{FCH}\) chung
Do đó: ΔCFH~ΔCEB
=>\(\dfrac{CF}{CE}=\dfrac{CH}{CB}\)
=>\(CF\cdot CB=CH\cdot CE\)
\(BH\cdot BD+CH\cdot CE\)
\(=BF\cdot BC+CF\cdot BC=BC\left(BF+CF\right)=BC^2\)
a: ΔABC vuông tại B
=>\(AB^2+BC^2=AC^2\)
=>\(AC=\sqrt{12^2+9^2}=15\left(cm\right)\)
b: Xét ΔHBA vuông tại H và ΔHCB vuông tại H có
\(\widehat{HBA}=\widehat{HCB}\left(=90^0-\widehat{HAB}\right)\)
Do đó: ΔHBA~ΔHCB
=>\(\dfrac{HB}{HC}=\dfrac{HA}{HB}\)
=>\(HB^2=HA\cdot HC\)
c: Đề sai rồi bạn
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
b: Ta có: \(\widehat{HAD}+\widehat{BDA}=90^0\)(ΔHAD vuông tại H)
\(\widehat{CAD}+\widehat{BAD}=\widehat{BAC}=90^0\)
mà \(\widehat{BDA}=\widehat{BAD}\)(ΔBAD cân tại B)
nên \(\widehat{HAD}=\widehat{CAD}\)
=>AD là phân giác của góc HAC
Xét ΔAHC có AD là phân giác
nên \(\dfrac{DH}{DC}=\dfrac{AH}{AC}\)
=>\(DH\cdot AC=AH\cdot DC\)
ĐKXĐ: x<>-2
\(x^2+\dfrac{4x^2}{\left(x+2\right)^2}=5\)
=>\(\dfrac{\left(x^2+2x\right)^2+4x^2}{\left(x+2\right)^2}=5\)
=>\(x^4+4x^3+4x^2+4x^2=5\left(x^2+4x+4\right)\)
=>\(x^4+4x^3+8x^2-5x^2-20x-20=0\)
=>\(x^4+4x^3+3x^2-20x-20=0\)
=>\(\left(x-2\right)\left(x+1\right)\left(x^2+5x+10\right)=0\)
mà \(x^2+5x+10>0\forall x\)
nên (x-2)(x+1)=0
=>\(\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
a: Xét ΔMBA vuông tại M và ΔABC vuông tại A có
\(\widehat{MBA}\) chung
Do đó: ΔMBA~ΔABC
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
ΔMBA~ΔABC
=>\(\dfrac{MA}{AC}=\dfrac{BA}{BC}\)
=>\(MA=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\)
Xét ΔBMA có BN là phân giác
nên \(\dfrac{NA}{NM}=\dfrac{BA}{BM}\left(1\right)\)
Xét ΔBAC có BG là phân gíac
nên \(\dfrac{GC}{GA}=\dfrac{BC}{BA}\left(2\right)\)
ΔMBA~ΔABC
=>\(\dfrac{BA}{BM}=\dfrac{BC}{BA}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{GC}{GA}=\dfrac{NA}{NM}\)
=>\(GC\cdot NM=NA\cdot GA\)
Lời giải:
Gọi số rổ là $a$ (chiếc)
Theo bài ra ta có: $3a+4=4(a-1)$
$\Leftrightarrow a=8$
Đáp án B.