K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 5 2024

Lời giải:
Gọi số rổ là $a$ (chiếc)

Theo bài ra ta có: $3a+4=4(a-1)$

$\Leftrightarrow a=8$

Đáp án B.

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

\(\widehat{ABH}\) chung

Do đó: ΔABH~ΔCBA

=>\(\dfrac{BA}{BC}=\dfrac{BH}{BA}\)

=>\(BA^2=BH\cdot BC\)

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét ΔCAB có CD là phân giác

nên \(\dfrac{AD}{AC}=\dfrac{BD}{BC}\)

=>\(\dfrac{AD}{8}=\dfrac{BD}{10}\)

=>\(\dfrac{AD}{4}=\dfrac{BD}{5}\)

mà AD+BD=AB=6cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{4}=\dfrac{BD}{5}=\dfrac{AD+BD}{4+5}=\dfrac{6}{9}=\dfrac{2}{3}\)

=>\(AD=4\cdot\dfrac{2}{3}=\dfrac{8}{3}\left(cm\right);BD=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\left(cm\right)\)

NV
10 tháng 5 2024

C đúng, quy luật: \(42=7.6\)\(54=9.6\)\(66=11.6\) ; \(78=13.6\) ; \(90=15.6\)

10 tháng 5 2024

66+12=78

Đáp án c

4
456
CTVHS
10 tháng 5 2024

C.3

Quy luật các chữ số sau đó = chữ số đằng trc x 2 + số đằng trc

NV
10 tháng 5 2024

B đúng

Quy luật: số sau = (số trước -1).2

10 tháng 5 2024

A.33

10 tháng 5 2024

⇒ Số phía sau 22 là: 22 + 11 = 33

Vậy a là đáp án đúng.

a: Xét ΔEHB vuông tại E và ΔDHC vuông tại D có

\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔEHB~ΔDHC

b: Xét ΔABC có

BD,CE là các đường cao

DB cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại F

Xét ΔBFH vuông tại Fvà ΔBDC vuông tại D có

\(\widehat{FBH}\) chung

Do đó: ΔBFH~ΔBDC

=>\(\dfrac{BF}{BD}=\dfrac{BH}{BC}\)

=>\(BF\cdot BC=BH\cdot BD\)

c: Xét ΔCFH vuông tại F và ΔCEB vuông tại E có

\(\widehat{FCH}\) chung

Do đó: ΔCFH~ΔCEB

=>\(\dfrac{CF}{CE}=\dfrac{CH}{CB}\)

=>\(CF\cdot CB=CH\cdot CE\)

\(BH\cdot BD+CH\cdot CE\)

\(=BF\cdot BC+CF\cdot BC=BC\left(BF+CF\right)=BC^2\)

a: ΔABC vuông tại B

=>\(AB^2+BC^2=AC^2\)

=>\(AC=\sqrt{12^2+9^2}=15\left(cm\right)\)

b: Xét ΔHBA vuông tại H và ΔHCB vuông tại H có

\(\widehat{HBA}=\widehat{HCB}\left(=90^0-\widehat{HAB}\right)\)

Do đó: ΔHBA~ΔHCB

=>\(\dfrac{HB}{HC}=\dfrac{HA}{HB}\)

=>\(HB^2=HA\cdot HC\)

c: Đề sai rồi bạn

loading...

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

b: Ta có: \(\widehat{HAD}+\widehat{BDA}=90^0\)(ΔHAD vuông tại H)

\(\widehat{CAD}+\widehat{BAD}=\widehat{BAC}=90^0\)

mà \(\widehat{BDA}=\widehat{BAD}\)(ΔBAD cân tại B)

nên \(\widehat{HAD}=\widehat{CAD}\)

=>AD là phân giác của góc HAC

Xét ΔAHC có AD là phân giác

nên \(\dfrac{DH}{DC}=\dfrac{AH}{AC}\)

=>\(DH\cdot AC=AH\cdot DC\)

ĐKXĐ: x<>-2

\(x^2+\dfrac{4x^2}{\left(x+2\right)^2}=5\)

=>\(\dfrac{\left(x^2+2x\right)^2+4x^2}{\left(x+2\right)^2}=5\)

=>\(x^4+4x^3+4x^2+4x^2=5\left(x^2+4x+4\right)\)

=>\(x^4+4x^3+8x^2-5x^2-20x-20=0\)

=>\(x^4+4x^3+3x^2-20x-20=0\)

=>\(\left(x-2\right)\left(x+1\right)\left(x^2+5x+10\right)=0\)

mà \(x^2+5x+10>0\forall x\)

nên (x-2)(x+1)=0

=>\(\left[{}\begin{matrix}x=2\left(nhận\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)

a: Xét ΔMBA vuông tại M và ΔABC vuông tại A có

\(\widehat{MBA}\) chung

Do đó: ΔMBA~ΔABC

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

ΔMBA~ΔABC

=>\(\dfrac{MA}{AC}=\dfrac{BA}{BC}\)

=>\(MA=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\)

Xét ΔBMA có BN là phân giác

nên \(\dfrac{NA}{NM}=\dfrac{BA}{BM}\left(1\right)\)

Xét ΔBAC có BG là phân gíac

nên \(\dfrac{GC}{GA}=\dfrac{BC}{BA}\left(2\right)\)

ΔMBA~ΔABC

=>\(\dfrac{BA}{BM}=\dfrac{BC}{BA}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{GC}{GA}=\dfrac{NA}{NM}\)

=>\(GC\cdot NM=NA\cdot GA\)