Cho một hình chữ nhật có chu vi là 38(cm). Nếu tăng chiều dài lên 2cm, giảm chiều rộng 2cm thì diện tích giảm 14cm^2 14cm2 . Diện tích ban đầu của hình chữ nhật là bao nhiêu..
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{x^2}{y^2+1}+\frac{y^2}{z^2+1}+\frac{z^2}{x^2+1}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y^2+y^2z^2+z^2x^2+x^2+y^2+z^2}\)
Với \(x^2y^2+y^2z^2+z^2x^2\le\frac{\left(x^2+y^2+z^2\right)^2}{3}\)
\(\Rightarrow P\ge\frac{3\left(x^2+y^2+z^2\right)^2}{\left(x^2+y^2+z^2\right)^2+3\left(x^2+y^2+z^2\right)}=\frac{3\left(x^2+y^2+z^2\right)}{x^2+y^2+z^2+3}\)
Xét:\(\frac{3\left(x^2+y^2+z^2\right)}{x^2+y^2+z^2+3}-\frac{3}{2}=\frac{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}{2\left(x^2+y^2+z^2+3\right)}\ge0\)
Đến đây xong rồi he
Gọi tử số lúc đầu là a; mẫu số luacs đầu là a/(a + 3)
Phân số lúc sau là : (a + 1)/(a + 4) => (a + 1)/(a + 4) = 3/4
Áp dụng t/c hai phân số bằng nhau ta có 4a + 4 = 3a + 12 => a = 8
Suy ra phân sô lúc đầu là 8/11
học tốt
Trả lời:
Áp dụng Bất Đẳng Thức Cauchy-Schwarz ta có:
(3+1)(3x2+y2)≥(3x+y)2
⇒4(3x2+y2)≥(3x+y)2⇒4(3x2+y2)≥(3x+y)2
⇒4(3x2+y2)≥(3x+y)2=12=1⇒4(3x2+y2)≥(3x+y)2=12=1
⇒M=3x2+y2≥14⇒M=3x2+y2≥14
Đẳng thức xảy ra khi x=y=14
Ta có: x + y = 1 => y = 1 - x
Khi đó: P = \(x^3+y^3+2x^2y^2=\left(x+y\right)^3-3xy\left(x+y\right)+2\left(xy\right)^2\)
\(=2\left(xy\right)^2-3xy+1=2\left[\left(xy\right)^2-2.xy.\frac{3}{4}+\frac{9}{16}\right]-\frac{1}{8}\)
\(=2\left(xy-\frac{3}{4}\right)^2-\frac{1}{8}\)
\(=2\left[x\left(1-x\right)-\frac{3}{4}\right]^2-\frac{1}{8}\)
\(=2\left[-x^2+x-\frac{3}{4}\right]^2-\frac{1}{8}\)
\(=2\left[\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\right]^2-\frac{1}{8}\ge\frac{3}{8}\)
Dấu "=" xảy ra <=> x = y =1/2
Bài 2 bạn tham khảo cách làm của cô Linh Chi tại đây nhé :
Câu hỏi của nguyen trung nghia - Toán lớp 8 - Học toán với OnlineMath
Học tốt và cá tháng tư đừng để bị troll nha !!!!!!!!!!!
B1:
\(M=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=2+\frac{x}{y}+\frac{y}{x}\)
Nhờ dự đoán được điểm rơi,ta chứng minh bất đẳng thức sau luôn đúng:\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
Thật vậy !!!
\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
\(\Leftrightarrow\left(\frac{x}{y}-\frac{1}{2}\right)+\left(\frac{y}{x}-2\right)\le0\)
\(\Leftrightarrow\frac{2x-y}{2y}+\frac{y-2x}{x}\le0\)
\(\Leftrightarrow\frac{2x^2-xy+2y^2-4xy}{2xy}\le0\)
\(\Leftrightarrow2x^2-5xy+2y^2\le0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)\le0\) ( đúng )
Dấu "=" xảy ra tại \(x=1;y=2\)
Vậy \(M_{max}=\frac{9}{2}\Leftrightarrow x=1;y=2\)