Định m nguyên để hpt sau có nghiệm duy nhất là nghiệm nguyên:
\(\hept{\begin{cases}mx+2y=m+1\\2x+my=2m-1\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi đường thẳng \(y=2x-3\)là (d')
Để \(\left(d\right)//\left(d'\right)\Leftrightarrow\hept{\begin{cases}m-1=2\\2\ne-3\end{cases}}\) (luôn đúng)
\(\Leftrightarrow m=3\)
Vậy \(m=3\) thì đường thẳng (d) song song với đường thẳng \(y=2x-3\)
Học tốt
x2-2xy =x(x-2y)
Cái này giúp gì vậy ????
:)))
Đề bài thiếu : không có 4 điểm nào cùng thuộc 1 đường tròn ( nhỡ n điểm này cùng thuộc 1 đường tròn)
Có n điểm mà ko có 3 điểm nào thẳng hàng luôn tồn tại 2 điểm sao cho n−2 điểm còn lại ∈ cùng một nửa mặt phẳng có bờ là đường thẳng chứa đoạn thẳng có 2 mút là 2 điểm trên
gọi 2 điểm đó là A1,A2 và n−2 điểm còn lại là B1,B2,B3,...,Bn−2
Xét các góc A1BiA2ˆ(i=1,2,3,..,n−2)
luôn tồn tại một góc có số đo lớn hơn hẳn những góc còn lại giả sử là A1BmA2ˆ
khi đó vẽ đường tròn ngoại tiếp TG này
Dễ cm nếu ∃1 điểm nằm trong đường tròn đó gs là Bn thì A1BnA2ˆ>A1BmA2ˆ
=> vô lý vì góc trên là lớn nhất
P/s : Bài náy có thể mở rộng là có thể vẽ 1 đường tròn chứa đúng m điểm với (m≤n)
Trong các khoảng cách từ O đến các cạnh của đa giác, giả sử khoảng cách từ O đến cạnh AB là nhỏ nhất (đó là đường vuông góc OE)
Ta sẽ chứng minh E phải thuộc cạnh AB
Giả sử E nằm ngoài cạnh AB, khi đó OE phải cắt một trong các cạnh của đa giác tại G
Dễ thấy OF<OG<OE nghĩa là điểm O gần cạnh BC hơn cạnh AB
Điều này trái với việc chọn cạnh AB, từ đó ta có điều phải chứng minh
A B E G O F C D
Bài 2:
a: H là trung điểm của BC
nên HB=HC=2,5(cm)
⇔AH=5√152(cm)
⇔AH=5152(cm)
S=5√152⋅52=25√154(cm2)
S=5152⋅52=25154(cm2)
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà ˆB=ˆCB^=C^
nên BMNC là hình thang cân
Thu gọn
Từ giả thiết : \(abc=b+2c\)
\(\Leftrightarrow\frac{b+2c}{bc}=a\)
\(\Leftrightarrow\frac{1}{c}+\frac{2}{b}=a\)(1)
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Ta có : \(P=\frac{3}{b+c-a}+\frac{4}{c+a-b}+\frac{5}{a+b-c}\)
\(=\frac{1}{b+c-a}+\frac{1}{c+a-b}+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)+3\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)\)
\(\ge\frac{4}{2c}+2\cdot\frac{4}{2b}+3\cdot\frac{4}{2a}=\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)
Áp dụng (1) vào \(P\): \(\frac{2}{c}+\frac{4}{b}+\frac{6}{c}=2\left(\frac{1}{c}+\frac{2}{b}+\frac{3}{a}\right)=2\left(a+\frac{3}{a}\right)\ge4\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)
Vậy \(Min_P=4\sqrt{3}\Leftrightarrow a=b=c=\sqrt{3}\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y},x>0,y>0\)
\(P=\frac{1}{b+c-a}+\frac{1}{a+c-b}+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)+3\left(\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\)
\(\Rightarrow P\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)
Từ giả thiết ta có: \(\frac{1}{c}+\frac{2}{b}=a\) nên \(\frac{2}{c}+\frac{4}{b}+\frac{6}{a}=2\left(\frac{1}{c}+\frac{2}{b}+\frac{3}{a}\right)=2\left(a+\frac{3}{a}\right)\ge4\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)
Vậy giá trị nhỏ nhất của P=\(4\sqrt{3}\) đạt được khi \(a=b=c=\sqrt{3}\)
Bạn kia làm sai r
Ta có đánh giá quen thuộc \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)
mà \(3abc\left(a+b+c\right)\le\left(ab+bc+ca\right)^2\)
do đó \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{a+b+c}{abc}=\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)}\ge\frac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\)
Phép chứng minh hoàn tất khi ta cm được
\(\frac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\ge a^2+b^2+c^2\)
hay \(3\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)
Theo bđt AM-GM ta có
\(\left(a+b+c\right)^2=\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\)
\(\ge3\sqrt[3]{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2}\)
hay \(\left(a+b+c\right)^6\ge27\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)
mà a+b+c=3 nên \(\left(a+b+c\right)^6=81\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c=1
Xét BĐT phụ \(\frac{1}{a^2}+4a\ge a^2+4\Leftrightarrow\frac{\left(a-1\right)^2\left(1+2a-a^2\right)}{a^2}\ge0\)
Đến đây, ta đưa điều phải chứng minh về dạng \(\frac{\left(a-1\right)^2\left(1+2a-a^2\right)}{a^2}+\frac{\left(b-1\right)^2\left(1+2b-b^2\right)}{b^2}+\frac{\left(c-1\right)^2\left(1+2c-c^2\right)}{c^2}\ge0\)(*)
Không mất tính tổng quát, giả sử \(a\ge b\ge c\)
Xét hai trường hợp:
Trường hợp 1: \(a\le1+\sqrt{2}\Rightarrow c\le b\le a\le1+\sqrt{2}\)
Khi đó thì \(1+2a-a^2\ge0;1+2b-b^2\ge0;1+2c-c^2\ge0\)dẫn đến (*) đúng
Trường hợp 2: \(a>1+\sqrt{2}\Rightarrow b+c=3-a< 3-\left(1+\sqrt{2}\right)=2-\sqrt{2}< \frac{2}{3}\)
\(\Rightarrow bc\le\frac{\left(b+c\right)^2}{4}< \frac{\frac{4}{9}}{4}=\frac{1}{9}\)
Mà a,b,c dương nên \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}>\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}>18>\left(a+b+c\right)^2>a^2+b^2+c^2\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c = 1
\(n+1⋮\left(\sqrt{n}-1\right)\)
\(\left(n-1+2\right)⋮\left(\sqrt{n}-1\right)\)
\(2⋮\left(\sqrt{n}-1\right)\)
suy ra n=9