K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2020

+) XSO4 

Ta có SO4 hóa trị II

Gọi hóa trị của X là a

Theo quy tắc hóa trị ta có :

1 . a = 1 . II => a = 2

=> X hóa trị II

+) YH

Ta có H hóa trị I

Gọi hóa trị của Y là a

Theo quy tắc hóa trị ta có :

1 . a = 1 . I => a = 1

=> Y hóa trị I

CTHH dạng chung của hợp chất : XxYy

Theo quy tắc hóa trị ta có :

x/y = II/I = 2/1

=> x = 2 ; y = 1

=> CTHH của hợp chất là X2Y

                                  

24 tháng 10 2020

\(x^2-3x+xy-3y\)

\(=\left(x^2-3x\right)+\left(xy-3y\right)\)

\(=x\left(x-3\right)+y\left(x-3\right)\)

\(=\left(x-3\right)\left(x+y\right)\)

\(x^2-3x+xy-3y=\left(x^2+xy\right)-\left(3x+3y\right)\)

\(=x\left(x+y\right)-3\left(x+y\right)=\left(x+y\right).\left(x-3\right)\)

tham khảo cách almf trên đay ạ

chúc cậu học tốt '.'

24 tháng 10 2020

\(x^3+\frac{1}{x^3}=x^3+\left(\frac{1}{x}\right)^3=\left(x+\frac{1}{x}\right)\left(x^2-x+\frac{1}{x^2}\right)\)( x khác 0 )

\(-x^3+9x^2-27x+27=-\left(x^3-9x^2+27x-27\right)=-\left(x-3\right)^3\)

\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1-x+y\right)\left(xy+1+x-y\right)\)

24 tháng 10 2020

\(1-27x^3\)

\(=1^3-\left(3x\right)^3\)

\(=\left(1-3x\right)\left(1+3x+9x^2\right)\)

24 tháng 10 2020

1 - 27x3

= 13 - ( 3x )3

= ( 1 - 3x )( 1 + 3x + 9x2 )

24 tháng 10 2020

a) ax + ay - bx - by = ( ax - bx ) + ( ay - by ) = x( a - b ) + y( a - b ) = ( a - b )( x + y ) < đã sửa >

b) 2x2 - 6xy + 5x - 15y = 2x( x - 3y ) + 5( x - 3y ) = ( x - 3y )( 2x + 5 )

c) ( a + b )2 - 4a2 = ( a + b )2 - ( 2a )2 = ( a + b - 2a )( a + b + 2a ) = ( b - a )( b + 3a )

d) 5a2xy - 10a3x - 15a2x2 = 5a2x( y - 2a - 3x )

e) 3( x - 1 ) + 5x( x - 1 ) = ( x - 1 )( 3 + 5x )

f) 9a2 - 4 = ( 3a )2 - 22 = ( 3a - 2 )( 3a + 2 )

g) 2x3 + 8x4 + 8x = 2x( x + 4x2 + 4 ) 

h) a2 - 4 + 4b - b2 = a2 - ( b2 - 4b + 4 ) = a2 - ( b - 2 )2 = ( a - b + 2 )( a + b - 2 )

i) a2 + 2ab + b2 - 16 = ( a2 + 2ab + b2 ) - 16 = ( a + b )2 - 42 = ( a + b - 4 )( a + b + 4 )

k) x2 + 5x + 4 = x2 + x + 4x + 4 = x( x + 1 ) + 4( x + 1 ) = ( x + 1 )( x + 4 )

l) 2x2 - 3x - 5 = 2x2 + 2x - 5x - 5 = 2x( x + 1 ) - 5( x + 1 ) = ( x + 1 )( 2x - 5 )

m) x3 + 6x2 + 9x = x( x2 + 6x + 9 ) = x( x + 3 )2

24 tháng 10 2020

A = -x2 + x - 3 = -( x2 - x + 1/4 ) - 11/4 = -( x - 1/2 )2 - 11/4 ≤ -11/4 < 0 ∀ x ( đpcm )

B = -4x2 + 4x - 5 = -( 4x2 - 4x + 1 ) - 4 = -( 2x - 1 )2 - 4 ≤ -4 < 0 ∀ x ( đpcm )

C = -x2 + 4x - 6 = -( x2 - 4x + 4 ) - 2 = -( x - 2 )2 - 2 ≤ -2 < 0 ∀ x ( đpcm )

24 tháng 10 2020

A = x2 + 6x + 11 = ( x2 + 6x + 9 ) + 2 = ( x + 3 )2 + 2 ≥ 2 > 0 ∀ x ( đã sửa )

B = x2 - 4x + 12 = ( x2 - 4x + 4 ) + 8 = ( x - 2 )2 + 8 ≥ 8 > 0 ∀ x ( đpcm )

C = x2 + 4x + 6 = ( x2 + 4x + 4 ) + 2 = ( x + 2 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

D = x2 - 2x + 5 = ( x2 - 2x + 1 ) + 4 = ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )

23 tháng 10 2020

Ta có: 

\(A=-1^2+2^2-3^2+4^2-...-\left(n-1\right)^2+n^2\) (đã sửa đề)

\(A=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left[n^2-\left(n-1\right)^2\right]\)

\(A=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(n-n+1\right)\left(n+n-1\right)\)

\(A=1+2+3+4+...+\left(n-1\right)+n\)

\(A=\frac{\left(n+1\right)\left[\left(n-1\right)\div1+1\right]}{2}=\frac{n\left(n+1\right)}{2}\)

25 tháng 10 2020

xin lỗi, nhưng bạn có thể giải đề này hộ mình được ko?

sao bạn phải sửa đề vậy?