cho tam giác ABC cân tại A, D là điểm thuộc cạnh BC
CM rằng AB>AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : P + Q hay
\(8xy+5x-2y-5x-2y=8xy-4y\)
Vậy \(P+Q=8xy-4y\)
a) Xét 2 tam giác vuông ABH và ACK có:
AB=AC
ˆBADchungBAD^chung
Suy ra: ΔABH =ΔACK(cạnh huyền- góc nhọn)
b) Do ΔABH =ΔACK nên AH=AK ⇒ HC=KB
Xét 2 tam giác vuông KOB và HOC có:
KB=HC
ˆBOK=ˆCOHBOK^=COH^ (đối đỉnh)
Suy ra: ΔKOB=ΔHOC (góc nhọn - cạnh góc vuông)
⇒OK=OH
c) ΔABC có 2 đường cao BH và CK cắt nhau tại O
⇒AO là đường cao còn lại
⇒AO⊥BC
gọi M là giao của AO và BC ⇒AM là trugn trực của BC
ΔIBC cân tại I ⇒ IM là trung trực của BC
⇒ A,I,M thẳng hàng
Hay A,O,M thẳng hàng
Tgiac ABC cân tại A => AB = AC và góc ABC = ACB
a) Xét tgiac ABH và ACK có:
+ AB = AC
+ chung góc A
+ góc AHB = AKC = 90 độ
=> tgiac ABH = ACK (ch-gn)
=> góc ABH = ACK
Mà góc ABC = ACB
=> ABC - ABH = ACB - ACK
=> góc OBC = OCB
=> tgiac OBC cân tại O
=> đpcm
b) Tgiac OBC cân tại O => OB = OC
Xét tgiac OBK và OCH có:
+ góc OKB = OHC = 90 độ
+ OB = OC
+ góc KBO = HCO (cmt)
=> tgiac OBK = OCH (ch-gn)
=> đpcm
c) Xét tgiac ABO và ACO có:
+ OB = OC
+ AO chung
+ AB = AC
=> tgiac ABO = ACO (ccc)
=> góc BAO = CAO
=> tia AO là tia pgiac của góc BAC (1)
Xét tgiac ABI và ACI:
+ AI chung
+ AB = AC
+ IB = IC
=> tgiac ABI = ACI (ccc)
=> góc BAI = CAI
=> AI là tia pgiac góc BAC (2)
(1), (2) => A, O, I thẳng hàng (đpcm)
hok tốt tk nha
Xét tg EAC và tg BAD có:
Góc EAC = BAD ( = 90° + BAC )
EA = BA
AD = AC
Suy ra ∆EAC = ∆BAD ( c- g- c )
Suy ra BD= EC( đpcm)
Đó 2 ∆ trên bằng nhau suy ra góc ADB= góc ACE
Lại có góc ADB+ góc BDC + góc ACD= 90°
Suy ra: góc BDC + góc ACD + góc ACD = 90°
Suy ra∆ CDO vuông tại O( Ở là gđ của EC và BD )
Suy ra: EC vuông góc BD