Tìm x , biết :
a. x2 = 2x + 1
b. (5x4 - 3x3) : 2x3 = 1/2
c. (x4 - 2x2 - 8) : (x - 2) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 2x3 + 4x2 + 5x + 3
= 2x3 + 2x2 + 2x2 + 2x + 3x + 3
= 2x2( x + 1 ) + 2x( x + 1 ) + 3( x + 1 )
= ( x + 1 )( 2x2 + 2x + 3 )
=> ( 2x3 + 4x2 + 5x + 3 ) : ( x + 1 ) = 2x2 + 2x + 3
2.a) 2x3 - 3x2 + x + a chia hết cho x + 2
Ta có đa thức chia có bậc 3, đa thức bị chia có bậc 1
=> Thương bậc 2
Lại có hệ số cao nhất là 2 nên đặt đa thức thương là 2x2 + bx + c
=> 2x3 - 3x2 + x + a chia hết cho x + 2
⇔ 2x3 - 3x2 + x + a = ( x + 2 )( 2x2 + bx + c )
⇔ 2x3 - 3x2 + x + a = 2x3 + bx2 + cx + 4x2 + 2bx + 2c
⇔ 2x3 - 3x2 + x + a = 2x3 + ( b + 4 )x2 + ( c + 2b )x + 2c
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}b+4=-3\\c+2b=1\\2c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-7\\c=15\\a=30\end{cases}}\)
Vậy a = 30
b) x2 - 3x + 3 chia x - a được thương là x + 3 dư 21
=> x2 - 3x + 3 = ( x - a )( x + 3 ) + 21
⇔ x2 - 3x + 3 - 21 = x2 + 3x - ax - 3a
⇔ x2 - 3x - 18 = x2 + ( 3 - a )x - 3a
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}3-a=-3\\-3a=-18\end{cases}}\Leftrightarrow a=6\)
Vậy a = 6
c) Tí mình gửi link nhé
c) https://imgur.com/TzbHKPG
Bạn chịu khó đánh máy tí nhé ;-;
Ta có (3x + 2)(2 - 3x) + (9x - 1)(x + 1) - 8x
= -9x2 + 6x + 4 - 6x + 9x2 + 9x - x - 1 - 8x
= 3 + 8x - 8x
= 3
Vậy biểu thức trên không phụ thuộc vào biến
( 3x + 2 )( 2 - 3x ) + ( 9x - 1 )( x + 1 ) - 8x
= 6x - 9x2 + 4 - 6x + 9x2 + 9x - x - 1 - 8x
= 3
=> đpcm
Ta có: \(\left(3x+2\right)\left(2-3x\right)+\left(9x-1\right)\left(x+1\right)-8x\)
\(=4-9x^2+9x^2+8x-1+8x\)
\(=3\)
=> BT không phụ thuộc vào giá trị của biến
a. 2x - 6y
Bài làm
a. 2x - 6y
= 2(x - 3y)
b. x2 - y2
= (x - y)(x + y)
c. 2x3 + 4x2 + 2x
= 2x(x2 + 2 + 1)
= 2x(x2 + 3)
d. x2 - 2xy + y2 - 9
= (x2 - 2xy + y2) - 9
= (x - y)2 - 9
= (x - y - 3)(x - y + 3)
e. x3 - 10x2 + 25x
= x(x2 - 10x + 25)
= x(x2 - 2.5.x + 52)
= x(x + 5)2
f. xy + y2 - x - y
= y(x + y) - (x + y)
= (x + y)(y - 1)
a) 2x - 6y = 2( x - 3y )
b) x2 - y2 = ( x - y )( x + y )
c) 2x3 + 4x2 + 2x = 2x( x2 + 2x + 1 ) = 2x( x + 1 )2
d) x2 - 2xy + y2 = ( x2 - 2xy + y2 ) - 9 = ( x - y )2 - 32 = ( x - y - 3 )( x - y + 3 )
e) x3 - 10x2 + 25x = x( x2 - 10x + 25 ) = x( x - 5 )2
f) xy + y2 - x - y = ( xy + y2 ) - ( x + y ) = y( x + y ) - ( x + y ) = ( x + y )( y - 1 )
a) \(2x-6y=2\left(x-3y\right)\)
b) \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)
c) \(2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)^2\)
d) \(x^2-2xy+y^2-9\)
\(=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)
e) \(x^3-10x^2+25x=x\left(x^2-10x+25\right)=x\left(x-5\right)^2\)
f) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
a) \(x^2=2x+1\)
\(\Leftrightarrow x^2-2x-1=0\)
\(\Leftrightarrow x^2-2x+1-2=0\)
\(\Leftrightarrow\left(x-1\right)^2-2=0\)
\(\Leftrightarrow\left(x-1-\sqrt{2}\right)\left(x-1+\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1+\sqrt{2}\\x=1-\sqrt{2}\end{cases}}\)
b) ĐKXĐ : x khác 0
\(\frac{5x^4-3x^3}{2x^3}=\frac{1}{2}\)
\(\Leftrightarrow\frac{x^3\left(5x-3\right)}{2x^3}=\frac{1}{2}\)
\(\Leftrightarrow\frac{5x-3}{2}=\frac{1}{2}\)
\(\Leftrightarrow5x-3=1\Leftrightarrow x=\frac{4}{5}\)( thỏa mãn ĐKXĐ )
c) ĐKXĐ : x khác 2
\(\frac{x^4-2x^2-8}{x-2}=0\)
\(\Leftrightarrow x^4-2x^2-8=0\)
\(\Leftrightarrow x^4-4x^2+2x^2-8=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)+2\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\left(tm\right)\\x=2\left(ktm\right)\end{cases}}\)