K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2020

Nhận xét: Phương trình bậc 3 luôn có ít nhất 1 nghiệm thực .

Để phương trình bậc 3 có đúng 2 nghiệm phân biệt thì phương trình bậc 3 phải tách được thành: 

( x - a) (x - b)2 với a khác b

Đối với bài trên chúng ta làm như sau: 

\(x^3-2mx^2+\left(m^2+5m\right)x-2m^2-2m-8=0\)

<=> \(\left(x^3-8\right)-\left(2mx^2-5mx+2m\right)+\left(m^2x-2m^2\right)=0\)

<=> \(\left(x-2\right)\left(x^2+2x+4\right)-m\left(2x-1\right)\left(x-2\right)+m^2\left(x-2\right)=0\)

<=> \(\left(x-2\right)\left(x^2+2x+4-2mx+m+m^2\right)=0\)

<=> \(\left(x-2\right)\left(x^2+2\left(1-m\right)x+4+m+m^2\right)=0\)

<=> \(\left(x-2\right)\left[\left(x^2+2\left(1-m\right)x+\left(1-m\right)^2\right)+4+m+m^2-\left(1-m\right)^2\right]=0\)

<=> \(\left(x-2\right)\left[\left(x+1-m\right)^2+4+m+m^2-\left(1-m\right)^2\right]=0\)

Phương trình ba đầu có 2 nghiệm phân biệt 

đk cần là: \(4+m+m^2-\left(1-m\right)^2=0\Leftrightarrow3+3m=0\Leftrightarrow m=-1\)

Khi đó phương trình có hai nghiệm 2 và -2 khác nhau

Vậy m = - 1 thỏa mãn

( Lớp 8 chưa học đen ta nên giải hơi lủng)

29 tháng 10 2020

A B C H D I M K

+ Ta có 

M là trung điểm BC (đề bài) 

HM=DM (đề bài) => M là trung điểm HD

=> BHCD là hình bình hành (Tứ giá có 2 đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác đó là hbh) 

=> BH//CD mà BH vuông góc AC => CD vuông góc AC 

+ Từ I dựng đt vuông góc với AC cắt AC tại K

Xét tg ADC có

CD vuông góc AC (cmt)

IK vuông góc AC

=> IK//CD (cùng vuông góc với AC)

Ta cũng có I là trung điểm của AD

=> K là trung điểm của AC (trong 1 tg đường thẳng đi qua trung điểm của 1 cạnh // với 1 cạnh của tg thì đi qua trung điểm của cạnh còn lại) => IK là trung trực thuộc cạnh AC của tg ABC (1)

+ Xét tg AHD có

I là trung điểm của AD (đề bài)

M là trung điểm của HD (cmt)

=> IM là đường trung bình của tg AHD => IM//AH mà AH vuông góc với BC => IM vuông góc với BC => IM là đường trung trực thuộc cạnh BC của tg ABC (2)

Từ (1) và (2) => I là giao của 3 đường trung trực của tg ABC

29 tháng 10 2020

A B C H M D I

Ta có: I là trung điểm của AD; M là trung điểm HD 

=> IM là đường trung bình của tam giác AHD 

=> IM //AH  mà AH vuông BC ; M là trung điểm BC 

=> IM là đường trung trực của BC  (1)

Ta có: M là trung điểm BC; M là trung điểm HD

=> HCDB là hình bình hành 

=> DC // BH mà BH vuông AC => DC vuông AC 

=> Tam giác ACD vuông tại C 

=> IC = 1/2 AD=> IC = AI => I thuộc đường trung trực của AC (2)

(1); (2) => I là trung trực của tam giác ABC

28 tháng 10 2020

\(x^3+4x^2+8x=-5\)

\(\Leftrightarrow x^3+4x^2+8x+5=0\)

\(\Leftrightarrow x^3+x^2+3x^2+3x+5x+5=0\)

\(\Leftrightarrow\left(x^3+x^2\right)+\left(3x^2+3x\right)+\left(5x+5\right)=0\)

\(\Leftrightarrow x^2.\left(x+1\right)+3x\left(x+1\right)+5\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+3x+5\right)=0\)(1)

Ta có: \(x^2+3x+5=x^2+2.\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}=\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\forall x\)

\(\Rightarrow x^2+3x+5\ge\frac{11}{4}\)(2)

Từ (1) và (2) \(\Rightarrow x+1=0\)\(\Leftrightarrow x=-1\)

Vậy \(x=-1\)

28 tháng 10 2020

Sửa đề : ( a + b ) ( b + c ) ( c + a ) = 8abc 

Giải :

Áp dụng bất đẳng thức AM - GM cho 2 số dương , ta có :

\(\hept{\begin{cases}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{cases}}\) 

Nhân vế với vế của 3 bất đẳng thức trên ta được :

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dấu bằng xảy ra khi và chỉ khi a = b = c

28 tháng 10 2020

Vì a,b,c là các số thực dương

nên áp dụng bất đẳng thức Cauchy ta có :

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ca}\)

Nhân vế với vế

=> \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8\left|abc\right|=8abc\)

( do a,b,c là các số thực dương )

Đẳng thức xảy ra <=> a = b = c

=> đpcm

28 tháng 10 2020

Bài 2:

a) \(x^2-y^2+3x-3y=\left(x^2-y^2\right)+\left(3x-3y\right)\)

\(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)

b) \(5x-5y+x^2-2xy+y^2=\left(5x-5y\right)+\left(x^2-2xy+y^2\right)\)

\(=5\left(x-y\right)+\left(x-y\right)^2=\left(x-y\right)\left(x-y+5\right)\)

c) \(x^2-5x+4=x^2-x-4x+4=\left(x^2-x\right)-\left(4x-4\right)\)

\(=x\left(x-1\right)-4\left(x-1\right)=\left(x-1\right)\left(x-4\right)\)

27 tháng 10 2020

Đề True ??

30 tháng 10 2020

lời giải của 1 bạn trên "Diễn đàn toán học" . mình trích nguyên bài làm của bạn ấy luôn nha

Giả định \(a=x;b=y;c=z\)

Áp dụng AM-GM ta có : 

\(2\left(a^3+a^3+x^3\right)\ge6xa^2\)

\(3\left(b^3+b^3+y^3\right)\ge9yb^2\)

\(4\left(c^3+c^3+z^3\right)\ge12zc^2\)

Cộng 3 bất đẳng thức trên lại theo vế ta được 

\(2P+2x^3+3y^3+4z^3\ge6xa^2+9yb^2+12zc^2\)

Ta tìm x,y,z thỏa mãn \(\hept{\begin{cases}\frac{6x}{1}=\frac{9y}{2}=\frac{12z}{3}\\x^2+2y^2+3z^2=1\end{cases}}\)

\(< =>\hept{\begin{cases}x=\frac{6}{\sqrt{407}}\\y=\frac{8}{\sqrt{407}}\\z=\frac{9}{\sqrt{407}}\end{cases}}\)

\(\Rightarrow P\ge\frac{12}{\sqrt{407}}\)

Vậy \(P_{min}=\frac{12}{\sqrt{407}}\Leftrightarrow a=\frac{6}{\sqrt{407}};b=\frac{8}{\sqrt{407}};c=\frac{9}{\sqrt{407}}\)