Tính nguyên hàm của y=sin³x.cosx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi đánh giá năng lực
I think that we have to prove \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=-2\)
We have \(a+b+c=abc\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
We have \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=0\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=0\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=0\)( Because \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\))
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=-2\)
So...
Ta có: 1+1x1
= 1+1
=2
=>1+1x1=2 (điều phải chứng minh)
Vậy 1+1x1=2
Chúc bạn học tốt!
a) Trục Ox là đường thẳng đi qua O(0, 0, 0) và nhận i→=(1,0,0) làm vectơ chỉ phương nên có phương trình tham số là:
* Tương tự, trục Oy có phương trình
Trục Oz có phương trình
b) Đường thẳng đi qua M0 (x0,y0,z0) song song với trục Ox sẽ có vectơ chỉ phương là i→(1,0,0) nên có phương trình tham số là:
tương tự ta có Phương trình của đường thẳng đi qua M0 (x0,y0,z0) và song song với Oy là:
phương trình đường thẳng đi qua M0 (x0,y0,z0) và song song với Oz là
c) Đường thẳng đi qua M(2, 0, -1) và có vectơ chỉ phương u→(-1,3,5) có phương trình tham số là
có phương trình chính tắc là
d) Đường thẳng đi qua N(-2, 1, 2) và có vectơ chỉ phương u→(0,0,-3) có phương trình tham số là
Đường thẳng này không có Phương trình chính tắc.
e) Đường thẳng đi qua N(3, 2, 1) và vuông góc với mặt phẳng: 2x- 5y + 4= 0 nên nó nhận vectơ pháp tuyến của mặt phẳng này làn→(2,-5,0) là vectơ chỉ phương, nên ta có phương trình tham số là
Đường thẳng này không có Phương trình chính tắc.
f) Đường thẳng đi qau P(2, 3, -1) và Q(1, 2, 4) sẽ nhận PQ→(-1,-1,5) là vectơ chỉ phương, nên có phương trình tham số là
và có phương tình chính tắc là
Gọi O là tâm hình bình hành; MN cắt AC tại J
Kẻ PE//SO thì E là trung điểm của OC suy ra \(IO=\frac{1}{2}PE=\frac{1}{4}SO\)
Gọi thể tích khối chóp là V
Ta có : \(\frac{V_{S.B'D'P}}{V_{S.BCD}}=\frac{SB'}{SB}.\frac{SD'}{SD}.\frac{SP}{SC}=\frac{3}{4}.\frac{3}{4}.\frac{1}{2}=\frac{9}{32}\)
suy ra \(V_{S.B'D'P}=\frac{9}{32}V_{S.BCD}=\frac{9}{64}V\)
Suy ra \(V_{BDD'BPC}=\frac{1}{2}V-\frac{9}{64}V=\frac{23}{64}V\)
pcm \(V_{MNDD'B'B}=\frac{9}{64}V\)
Ta có : \(V_{MNDD'B'B}=V_{J.BB'D'D}+V_{M.BB'J}+V_{N.DD'J}=V_{J.BB'D'D}+2.V_{M.BB'J}\)
Với \(V_{J.BB'D'D}=\frac{1}{2}V_{A.BB'D'D}=\frac{1}{2}\left[1-\left(\frac{3}{4}\right)^2\right].V_{A.SBD}\)\(=\frac{1}{2}.\frac{7}{16}.\frac{1}{2}V=\frac{7}{64}V\)
\(V_{M.BB'J}=V_{B'.BMJ}=\frac{1}{4}V_{S.BMJ}=\frac{1}{4}.\frac{1}{8}V_{S.ABD}\)\(=\frac{1}{4}.\frac{1}{8}.\frac{1}{2}V=\frac{1}{64}V\)
Vậy \(V_{MNDD'B'B}=V_{J.BB'D'D}+2.V_{M.BB'J}=\frac{7}{64}V+2\frac{1}{64}V=\frac{9}{64}V\left(đpcm\right)\)
Gọi H là khối đa diện nằm bên dưới mp(MNP)
Gọi h,S,V lần lượt là chiều cao, diện tích đáy, thể tích của khối chóp S.ABCD
Dễ thấy:
\(\hept{\begin{cases}S_{DNU}=S_{BMT}=S_{AMN}=\frac{1}{4}S_{ABD}=\frac{1}{8}S\\d\left(p;\left(ABCD\right)\right)=\frac{1}{2}h;d\left(q;\left(ABCD\right)\right)=d\left(r;\left(ABCD\right)\right)=\frac{1}{4}h\end{cases}}\)
Ta có: \(S_{CTU}=S+\frac{1}{8}S=\frac{9}{8}S\)
\(V_{P\cdot CTU}=\frac{1}{3}\cdot\frac{1}{2}h\cdot\frac{9}{8}S=\frac{9}{16}V\)
\(V_{Q\cdot UDN}=V_{R\cdot BMT}=\frac{1}{3}\cdot\frac{1}{4}\cdot\frac{1}{8}S=\frac{1}{32}V\)
\(V_H=V_{P\cdot CTU}-V_{Q\cdot UDN}-V_{R\cdot BMT}=\frac{1}{2}V\)
=> đpcm
Nguồn: Chú lùn thứ 8