Trong các hàm số sau, hàm số nào là hàm số chẵn, hàm số nào là hàm số lẻ:
\(y=5x^6;y=24x;y=-11x;y=\frac{2}{3}x^4;y=\sqrt{3}x^3;y=x^{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT: \(a^2+b^2\ge2ab\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)
\(f\left(x\right)=x^4+\left(1-x\right)^4\ge\frac{\left[x^2+\left(1-x\right)^2\right]^2}{2}\ge\frac{\left[\frac{\left(x+1-x\right)^2}{2}\right]^2}{2}=\frac{1}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow x=1-x\Leftrightarrow x=\frac{1}{2}\)
Vậy tập giá trị của f(x) là: [1/8;+\(\infty\))
Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)>0,\forall x\)
Mặt khác: \(x^2-3x+1=2\left(x^2-x+1\right)-\left(x^2+x+1\right)\)
Đặt \(y=\sqrt{\frac{x^2-x+1}{x^2+x+1}}\)(có thể viết điều kiện \(y\ge0\)hoặc chính xác hơn là \(\frac{\sqrt{3}}{3}\le y\le\sqrt{3}\)), ta được:
\(2y^2-1=\frac{-\sqrt{3}}{3}y=0\Leftrightarrow6y^2+\sqrt{3y}-3=0\), ta được \(y=\frac{\sqrt{3}}{3}\)(loại \(y=\frac{-\sqrt{3}}{2}\))
=> Phương trình có nghiệm là x=1
ĐKXĐ: \(\hept{\begin{cases}x-m>0,\forall x\in\left(-1;0\right)\\-x+2m+6\ge0,\forall x\in\left(-1;0\right)\end{cases}\Leftrightarrow\hept{\begin{cases}x>m,\forall x\in\left(-1;0\right)\\2m+6\ge x,\forall x\in\left(-1;0\right)\end{cases}}}\)
+) \(m< x,\forall x\in\left(-1;0\right)\)thì \(m\)phải bé hơn GTNN của x trên đoạn (-1;0)
\(\Rightarrow m< -1\)
+) \(2m+6\ge x,\forall x\in\left(-1;0\right)\)thì 2m+6 phải lớn hơn GTLN của x trên đoạn (-1;0)
\(\Rightarrow2m+6\ge0\Leftrightarrow m\ge-3\)
Vậy \(-3\le m< -1\)thỏa đề.
Điều kiện để hàm số đã cho xác định là \(\hept{\begin{cases}x-m>0\\-x+2m+6\ge0\end{cases}\Leftrightarrow m< x\le2m+6}\)
Để hàm số có tập xác định \(D\ne\varnothing\)thì phải có m<2m+6 => m>-6 (*) Khi đó hàm số có tập xác định là (m;2m+6]
Hàm số xác định trên (-1;0) khi và chỉ khi (-1;0)\(\subset\)(m;2m+6], điều này tương đương với
\(\hept{\begin{cases}m\le-1\\2m+6\ge0\end{cases}\Leftrightarrow-3\le m\le-1}\)kết hợp với (*) ta được \(-3\le m\le-1\)
KL: