K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2021

áp dụng bernoli thôi, chẳng có gì khó

15 tháng 7 2020

Vì abc = 1 nên ta hoàn toàn có thể đặt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\)

Khi đó thì \(a-1+\frac{1}{b}=\frac{x}{y}-1+\frac{z}{y}=\frac{z+x-y}{y}\)

Tương tự ta có: \(b-1+\frac{1}{c}=\frac{x+y-z}{z}\)\(c-1+\frac{1}{a}=\frac{y+z-x}{x}\)

Ta đưa điều phải chứng minh về dạng \(\left(y+z-x\right)\left(z+x-y\right)\left(x+y-z\right)\le xyz\)(*)

Đặt \(\hept{\begin{cases}y+z-x=p\ge0\\z+x-y=q\ge0\\x+y-z=r\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{q+r}{2}\\y=\frac{r+p}{2}\\z=\frac{p+q}{2}\end{cases}}\)thì (*) trở thành \(pqr\le\frac{\left(p+q\right)\left(q+r\right)\left(r+p\right)}{8}\)(Nhưng điều này đúng theo BĐT AM - GM vì \(\frac{p+q}{2}\ge2\sqrt{pq}\left(1\right);\frac{q+r}{2}\ge2\sqrt{qr}\left(2\right);\frac{r+p}{2}\ge2\sqrt{rp}\left(3\right)\), nhân theo vế của 3 BĐT (1), (2), (3), ta được điều phải chứng minh)

Đẳng thức xảy ra khi x = y = z hay a = b = c = 1

15 tháng 7 2020

Bỏ số 2 chỗ áp dụng AM - GM cho mình nha!

\(\frac{p+q}{2}\ge\sqrt{pq};\frac{q+r}{2}\ge\sqrt{qr};\frac{r+p}{2}\ge\sqrt{rp}\)

13 tháng 7 2020

+ Qua C kẻ đg thẳng vuông góc với AC và cắt AD tại I

Gọi H,K lần lượt là hình chiếu của O,C trên AD.

+ OD là đg trung bình của t/g ACI

=> CI = 2 OD = BD = n

+ OH là đg trung bình của t/g ACK

=> CK = 2 OH = 2h

+ t/g ACI vuông tại C, đg cao CK

Suy ra \(\frac{1}{CK^2}=\frac{1}{AC^2}+\frac{1}{CI^2}\)

\(< =>\frac{1}{\left(2h\right)^2}=\frac{1}{m^2}+\frac{1}{n^2}\)

\(< =>\frac{1}{4h^2}=\frac{1}{m^2}+\frac{1}{n^2}\)

Vậy ta có điều phải chứng minh

10 tháng 7 2020

VÀO TKHĐ ĐỂ XEM HÌNH VẼ

Ta có tứ giác AMBC nội tiếp ( O ) nên \(\widehat{KMB}=\widehat{ACB}\)

Mặt khác \(\widehat{BFC}=\widehat{BEC}=90^0\) nên tứ giác BFEC nội tiếp suy ra \(\widehat{KFB}=\widehat{BCE}\)

Khi đó \(\widehat{KMB}=\widehat{KFB}\) nên tứ giác KMFB nội tiếp

Dễ thấy BFEC là tứ giác nội tiếp nên \(\widehat{FBC}=\widehat{FEA}\Rightarrow\) tứ giác EFCB nội tiếp

=> \(\widehat{HMA}=90^0\Rightarrow MH\perp AK\)

Nếu bạn gọi J là trung điểm của BC và chứng minh JM vuông góc AK thì bài toán khó hơn nhiều

8 tháng 7 2020

Trả lời 

\(\sqrt{17+12\sqrt{2}}=\sqrt{9+12\sqrt{2}+8}\)

                                   \(=\sqrt{\left(3+2\sqrt{2}\right)^2}\)

                                   \(=3+2\sqrt{2}\)

8 tháng 7 2020

Bài làm:

đkxđ: \(\hept{\begin{cases}x-5\ne0\\x-2\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ne5\\x\ge2\end{cases}}\)