Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(Q\left(x\right)=2x^2+x^3-2x^2+3x+1-5x^4\)
\(=-5x^4+x^3+\left(2x^2-2x^2\right)+3x+1\)
\(=-5x^4+x^3+3x+1\)
b: Bậc là 4
Hệ số tự do là 1
Hệ số cao nhất là -5
Xét ΔMEN và ΔMEP có
ME chung
EN=EP
MN=MP
Do đó: ΔMEN=ΔMEP
\(Q\left(1\right)=a^3+2\cdot1^4-5\cdot1^2-2\cdot1^3-6\cdot1+3\\ =a^3+2\cdot1-5\cdot1-2\cdot1-6\cdot1+3\\ =a^3+2-5-2-6+3\\ =a^3-8\)
\(Q\left(1\right)=a^3+2\cdot1^4-5\cdot1^2-2\cdot1^3-6\cdot1+3\)
\(=a^3+2-5-2-6+3\)
\(=a^3-8\)
Ta có :
\(x^3-3x^2+2x-6\\ =\left(x^3-3x^2\right)+\left(2x-6\right)\\ =x^2\left(x-3\right)+2\left(x-3\right)\\ =\left(x-3\right)\left(x^2+2\right)\)
Vậy `(x-3)(x^2 +2) : (x-3)=x^2+2`
\(\dfrac{x^3-3x^2+2x-6}{x-3}\)
\(=\dfrac{x^2\left(x-3\right)+2\left(x-3\right)}{x-3}\)
\(=x^2+2\)
Bài 1
a) Ta có:
BC > AC > AB (7 > 6 > 4)
⇒ ∠A > ∠B > ∠C (quan hệ giữa góc và cạnh đối diện trong tam giác)
b) Ta có:
∠A + ∠B + ∠C = 180⁰ (tổng ba góc trong ∆ABC)
⇒ ∠B = 180⁰ - (∠A + ∠C)
= 180⁰ - (50⁰ + 50⁰)
= 80⁰
Do ∠A = ∠C = 50⁰
⇒ BC = AB (quan hệ giữa cạnh và góc đối diện)
Do ∠B > ∠A (80⁰ > 50⁰)
⇒ AC > BC
⇒ AC > BC = AB
Bài 2
a) Ta có:
∠A + ∠B + ∠C = 180⁰ (tổng ba góc trong ∆ABC)
⇒ ∠C = 180⁰ - (∠A + ∠B)
= 180⁰ - (100⁰ + 40⁰)
= 40⁰
⇒ ∠A là góc lớn nhất
⇒ BC là cạnh lớn nhất (cạnh đối diện với góc lớn nhất)
b) ∆ABC có:
∠B = ∠C = 40⁰
⇒ ∆ABC cân tại A
Ta có:
abcdef = 1000abc + def
Do (abc + def) ⋮ 37
Mà 37 là số nguyên tố
⇒ abc ⋮ 37 và def ⋮ 37
*) abc ⋮ 37
⇒ 1000abc ⋮ 37
⇒ (1000abc + def) ⋮ 37
⇒ abcdef ⋮ 37
a: Xét ΔMAE và ΔMDB có
MA=MD
\(\widehat{AME}=\widehat{DMB}\)(hai góc đối đỉnh)
ME=MB
Do đó: ΔMAE=ΔMDB
=>AE=BD
b: Xét ΔABC có \(\widehat{ACB}< \widehat{ABC}\)
mà AB,AC lần lượt là cạnh đối diện của các góc ACB,ABC
nên AB<AC
Xét ΔABC có AB<AC
mà BD,CD lần lượt là hình chiếu của AB,AC trên BC
nên BD<CD
c: Xét ΔMAF và ΔMDC có
MA=MD
\(\widehat{AMF}=\widehat{DMC}\)(hai góc đối đỉnh)
MF=MC
Do đó: ΔMAF=ΔMDC
=>\(\widehat{MAF}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AF//DC
=>AF//BC
Ta có: ΔMAE=ΔMDB
=>\(\widehat{MAE}=\widehat{MDB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AE//BD
=>AE//BC
Ta có: AE//BC
AF//BC
AE,AF có điểm chung là A
Do đó: E,A,F thẳng hàng
Câu 4:
Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>BA=BE và DA=DE
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(1)
Ta có: DA=DE
=>D nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
Câu 5:
a: ΔABC cân tại A
mà AI là đường trung tuyến
nên AI\(\perp\)BC tại I
Ta có: I là trung điểm của BC
=>\(IB=IC=\dfrac{BC}{2}=4\left(cm\right)\)
ΔAIB vuông tại I
=>\(AI^2+IB^2=AB^2\)
=>\(AI^2=5^2-4^2=9\)
=>AI=3(cm)
Xét ΔABC có
AI là đường trung tuyến
G là trọng tâm
Do đó: \(IG=\dfrac{1}{3}IA=\dfrac{1}{3}\cdot3=1\left(cm\right)\)
ΔBIG vuông tại I
=>\(IB^2+IG^2=GB^2\)
=>\(GB^2=4^2+1^2=17\)
=>\(GB=\sqrt{17}\left(cm\right)\)