K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2020

tự kẻ hình ná:>>

a) Xét tam giác MBE và tam giác NCF có

MBE=NCF(=ACB)

MEB=NFC(=90 độ)

MB=NC(gt)

=> tam giác MBE= tam giác NCF(ch-gnh)

=>ME=NF( hai cạnh t/ứ)

ME//NF( cùng vuông góc với EF)

=> MENF là hbh (có hai cạnh đối // và bằng nhau)

b) Mx//BC=> Mx//EF=> EMK=MEF=90 độ

   vì N,F,K thẳng hàng=> NFE+EFK=180 độ mà NFE=90 độ=> EFK=90 độ

ta có trong tứ giác MEFK có KME=MEF=EFK=90 độ=> MEFK là hcn=> KF=ME mà ME=FN=> KF=FN=> F là trung điểm KN

EF vuông góc với KN tại F=> EF là đường trung trực => EK=EN

5 tháng 11 2020

Lười vẽ hình quá nên làm tạm câu 5 thôi nhé:)

Ta có: 

\(A=-2x^2-10y^2+4xy+4x+4y+2013\)

\(A=\left(-2x^2-2y^2-2+4xy+4x-4y\right)-\left(8y^2-8y+2\right)+4+2013\)

\(A=-2\left(x^2+y^2+1-2xy-2x+2y\right)-2\left(4y^2-4y+1\right)+2017\)

\(A=-2\left(y-x+1\right)^2-2\left(2y-1\right)^2+2017\le2017\left(\forall x,y\right)\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}-2\left(y-x+1\right)^2=0\\-2\left(2y-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y-x+1=0\\y=\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y+1=\frac{1}{2}+1=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)

Vậy \(Max_A=2017\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{1}{2}\end{cases}}\)

Cho hỏi gửi hình lên kiểu gì vậy??

5 tháng 11 2020

Nguyễn Minh Đăng⁰⁶ : ib riêng nhá 

5 tháng 11 2020

phân tích đa thức thành nhân tử nha :vv

5 tháng 11 2020

6x - 9 - x2 = -( x2 - 6x + 9 ) = -( x - 3 )2

5 tháng 11 2020

xin phép mik viết lại đề 

11(x-y)-2x(y-x)

5 tháng 11 2020

\(11\left(x-y\right)-2x\left(y-x\right)\)

\(=11\left(x-y\right)+2x\left(x-y\right)\)

\(=\left(x-y\right)\left(11+2x\right)\)

5 tháng 11 2020
Đây là toán 9 :)
5 tháng 11 2020
\(ĐKXĐ:x\ge\frac{9}{5}\)\(K=\sqrt{5x+6\sqrt{5x-9}}+\sqrt{5x-6\sqrt{5x-9}}\)\(=\sqrt{\left(5x-9\right)+6\sqrt{5x-9}+9}+\sqrt{\left(5x-9\right)-6\sqrt{5x-9}+9}\)\(=\sqrt{\left(\sqrt{5x-9}+3\right)^2}+\sqrt{\left(\sqrt{5x-9}-3\right)^2}\)\(=\left|\sqrt{5x-9}+3\right|+\left|\sqrt{5x-9}-3\right|\)\(=\sqrt{5x-9}+3+\left|3-\sqrt{5x-9}\right|\)Áp dụng tính chất của dấu giá trị tuyệt đối ta có:\(\left|3-\sqrt{5x-9}\right|\ge3-\sqrt{5x-9}\)\(\Leftrightarrow3-\sqrt{5x-9}\ge0\)\(\Leftrightarrow\sqrt{5x-9}\le3\)\(\Leftrightarrow5x-9\le9\)\(\Leftrightarrow5x\le18\)\(\Leftrightarrow x\le\frac{18}{5}\)\(\Rightarrow\frac{9}{5}\le x\le\frac{18}{5}\)\(\Rightarrow K\ge\sqrt{5x-9}+3+3-\sqrt{5x-9}=6\)Dấu " = " xảy ra \(\Leftrightarrow x=\frac{18}{5}\)( thỏa mãn ĐKXĐ )Vậy \(minK=6\)\(\Leftrightarrow x=\frac{18}{5}\)
DD
4 tháng 11 2020

a) Theo đề bài có: \(D\)đối xứng với \(A\)qua \(M\)nên \(M\)là trung điểm của \(AD\).

Xét tứ giác \(ABDC\)có : \(M\)là trung điểm của \(BC\)\(M\)là trung điểm của \(AD\)nên \(ABDC\)là hình bình hành 

(tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành)

b) Gọi \(H\)là hình chiếu của \(A\)trên cạnh \(BC\). Khi đó \(I\)đối xứng với \(A\)qua \(H\)suy ra \(H\)là trung điểm của \(AI\).

Xét tam giác \(AID\)có:  \(H\)là trung điểm của \(AI\),  \(M\)là trung điểm của \(AD\)nên \(HM\)là đường trung bình của tam giác \(AID\)

suy ra \(HM//ID\) \(\Rightarrow BC//ID\).

c) Xét tứ giác \(BIDC\)có \(BC\)song song với \(ID\)nên \(BIDC\)là hình thang. 

Xét tam giác \(BAI\)có: \(BH\perp AI\)\(H\)là trung điểm của \(AI\)nên tam giác \(BAI\)cân tại \(B\)

suy ra \(BH\)đồng thời cũng là đường phân giác của \(\widehat{ABI}\)\(\Rightarrow\widehat{ABC}=\widehat{IBC}\)(1).

\(ABDC\)là hình bình hành nên \(AB//CD\)\(\Rightarrow\widehat{ABC}=\widehat{BCD}\)(2) (hai góc so le trong) 

(1) và (2) suy ra \(\widehat{IBC}=\widehat{BCD}\)suy ra hình thang \(BIDC\)là hình thang cân. 

4 tháng 11 2020

\(A=27x^3-27x^2+18x-6=3\left(9x^3-9x^2+6x-2\right)\)

\(B=2x^3-x^2+5x+6=2x^3-2x^2+x^2-x+6x+6==\left(2x^2+x+6\right)\left(x-1\right)\)

4 tháng 11 2020

\(x^2+4x-y^2+4=\left(x^2+4x+4\right)-y^2=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right)\left(x+2+y\right)\)