Bài 3. (2 điểm) Cho biểu thức $A=\dfrac{4}{{{x}^{2}}+x+1}$ và $B=\dfrac{2}{1-x}+\frac{2{{x}^{2}}+4x}{{{x}^{3}}-1}$ với $x\ne 1.$
a) Tính giá trị của biểu thức $A$ khi $x=-2.$
b) Tìm biểu thức $C$ biết $A=B+C$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(V_{S.MNPQ}=\dfrac{1}{3}.S_{MNPQ}.SO\)
\(\Rightarrow S_{MNPQ}=\dfrac{3.V_{S.MNPQ}}{SO}=\dfrac{3.1280}{15}=256cm^2\)
Xét tg vuông SOI
\(OI=\sqrt{SI^2-SO^2}\) (Pitago)
\(\Rightarrow OI=\sqrt{17^2-15^2}=8cm\)
Ta có
\(OI=\dfrac{MN}{2}\Rightarrow MN=2.OI=2.8=16cm\)
Ta có:
\(V=\dfrac{1}{3}.S_{MNPQ}.15=1280\left(cm^3\right)\)
\(\Rightarrow S_{MNPQ}=\dfrac{1280.3}{15}=256\left(cm^2\right)\)
\(\Rightarrow MN=\sqrt{256}=16\left(cm\right)\)
a) Tứ giác ABCD có:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\) (tổng các góc trong tứ giác ABCD)
Gọi \(x,y,z,t\) lần lượt là số đo các góc: \(\widehat{A},\widehat{B},\widehat{C},\widehat{D}\) \(\left(x,y,z,t>0\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{t}{4}=\dfrac{x+y+z+t}{1+2+3+4}=\dfrac{360^0}{10}=36^0\)
\(\dfrac{y}{2}=36^0\Rightarrow y=2.36^0=72^0\) (nhận)
Vậy \(\widehat{B}=72^0\)
b) Đường chéo của màn hình điện thoại:
\(\sqrt{7^2+15,5^2}\simeq17\left(cm\right)\) \(\simeq17.2,54\simeq43\left(inch\right)\)
Thể tích của khúc gỗ là: 30.30.30 = 27 000 (cm3)
Thể tích của hình chóp từ giác đều là: 30.30.30.1/3 = 9 000 (cm3)
Thể tích của phần gỗ bị cắt đi là: 27 000 - 9 000 = 18 000 (cm3)
a)
Ta có:
∠ABC + ∠CBm = 180⁰ (kề bù)
⇒ ∠ABC = 180⁰ - ∠CBm
= 180⁰ - 70⁰
= 110⁰
Tứ giác ABCD có:
∠A + ∠ABC + ∠C + ∠D = 360⁰ (tổng bốn góc trong tứ giác ABCD)
⇒ 3x + 110⁰ + x + 90⁰ = 360⁰
⇒ 4x + 200⁰ = 360⁰
⇒ 4x = 360⁰ - 200⁰
4x = 160⁰
⇒ x = 160⁰ : 4
⇒ x = 40⁰
b) ∆ABH vuông tại H
⇒ AB² = AH² + BH² (Pytago)
⇒ AH² = AB² - BH²
= 3,7² - 1,2²
= 12,25
⇒ AH = 3,5
⇒ AH/BH = 3,5/1,2 ≈ 2,9 > 2,2
Vậy thang cách chân tường không "an toàn"
a) Thay �=40x=40 và �=100y=100 vào �I ta có chỉ số nhiệt của thành phố �A là:
��= −45+2.40+10.100−0,2.40.100−0,007.402−0,05.1002+0,001.402.100+0,009.40.1002−0,000002.402.1002IA= −45+2.40+10.100−0,2.40.100−0,007.402−0,05.1002+0,001.402.100+0,009.40.1002−0,000002.402.1002
=−45+80+1000−800−11,2−500+160+3600−32=3451,8=−45+80+1000−800−11,2−500+160+3600−32=3451,8.
b) Thay �=50x=50 và �=90y=90 vào �I ta có chỉ số nhiệt của thành phố �B là:
��= −45+2.50+10.90−0,2.50.90−0,007.502−0,05.902+0,001.502.90+0,009.50.902−0,000002.502.902IB= −45+2.50+10.90−0,2.50.90−0,007.502−0,05.902+0,001.502.90+0,009.50.902−0,000002.502.902
=−45+100+900−900−17,5 −405+160+3645−25,92 =3411,58<��=−45+100+900−900−17,5 −405+160+3645−25,92 =3411,58<IA.
Vậy không khí ở thành phố �A nóng hơn tại thời điểm đó
D F E M K O H N
a) Tứ giác ����DKMN có �^=�^=�^=90∘D=K=N=90∘ nên là hình chữ nhật.
b) Vì ����DKMN là hình chữ nhật nên ��DF // ��MH.
Xét Δ���ΔKFM và Δ���ΔNME có:
�^=�^=90∘K=N=90∘
��=��FM=ME (giả thiết)
���^=�^KMF=E (đồng vị)
Suy ra Δ���=Δ���ΔKFM=ΔNME (cạnh huyền - góc nhọn)
Suy ra ��=��KF=MN (hai cạnh tương ứng) mà ��=��MN=DK nên ��=2��DF=2DK và ��=2��MH=2MN.
Do đó ��=��DF=MH.
Tứ giác ����DFMH có ��DF // ��,MH,DF=MH$ nên là hình bình hành.
Nên hai đường chéo ��,��DM,FH cắt nhau tại trung điểm �O của mỗi đường hay �,�,�F,O,H thẳng hàng.
c) Để hình chữ nhật ����DKMN là hình vuông thì ��=��DK=DN (1)(1)
Mà ��=12��DK=21DF và ��=��=��DN=KM=NE nên ��=12��DN=21DE (2)(2)
Từ (1)(1) và (2)(2) suy ra ��=��DF=DE nên Δ���ΔDFE cân tại �D.
\(A=5+2xy+14y-x^2-5y^2-2x\)
\(A=-x^2+2xy-2x-y^2+2y-1-4y^2+12y-9+15\)
\(A=-\left[x^2-2x\left(y-1\right)+\left(y-1\right)^2\right]-\left(2y-3\right)^2+15\)
\(A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\)
Mà: \(\left\{{}\begin{matrix}-\left(x-y+1\right)^2\le0\\-\left(2y-3\right)^2\le0\end{matrix}\right.\Rightarrow A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\le15\)
Dấu "=" xảy ra khi:
\(y=\dfrac{3}{2};x=\dfrac{1}{2}\)
Vậy: \(A_{min}=15\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\)
a) \(x=-2\Rightarrow A=\dfrac{4}{\left(-2\right)^2+\left(-2\right)+1}=\dfrac{4}{3}\)
b) \(A=B+C\Rightarrow C=A-B\)
\(=\dfrac{4}{x^2+x+1}-\left(\dfrac{2}{1-x}+\dfrac{2x^2+4x}{x^3-1}\right)\)
\(=\dfrac{4}{x^2+x+1}-\dfrac{2}{1-x}-\dfrac{2x^2+4x}{x^3-1}\)
\(=\dfrac{4}{x^2+x+1}+\dfrac{2}{x-1}-\dfrac{2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{4\left(x-1\right)+2\left(x^2+x+1\right)-2x^2-4x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{4x-4+2x^2+2x+2-2x^2-4x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2}{x^2+x+1}\)
Vậy \(C=\dfrac{2}{x^2+x+1}\)