phân tichs đa thức thành nhân tử
( x + 1 )( x+2)(x+3)(x+4) - 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\frac{7}{x}=9\Leftrightarrow\frac{x^2+7}{x}=9\Leftrightarrow x^2+7=9x\)
\(\Leftrightarrow x^2-9x+7=0\)
Ta có : \(\left(-9\right)^2-4.7=81-28=53\)
\(x_1=\frac{9-\sqrt{53}}{2};x_2=\frac{9+\sqrt{53}}{2}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(a+b+c+1\right)^2=\left(a.1+\frac{1}{\sqrt{2}}.\sqrt{2}\left(b+c\right)+\frac{1}{\sqrt{2}}.\sqrt{2}\right)^2\)\(\le\left(a^2+1\right)\text{[}3+2\left(b+c\right)^2\text{]}\)
Khi đó cần CM BĐT : \(\frac{5}{16}\text{[}3+2\left(b+c\right)^2\text{]}\le\left(b^2+1\right)\left(c^2+1\right)\)
Hay: \(16b^2c^2+6\left(b^2+c^2\right)+1\ge20ab\)
BĐT trên đúng theo BĐT AM-GM: \(16b^2c^2+1\ge8bc,6\left(b^2+c^2\right)\ge12bc\)
Dấu '=' xảy ra khi và chỉ khi a=b=c=1/2
TA CÓ: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Do đó: \(\frac{a^3+b^3+c^3}{4abc}=\frac{3}{4}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{4abc}\)
\(=\frac{3}{4}+\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\ge\frac{3}{4}+\frac{1}{4}.\frac{9}{ab+bc+ca}\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(=\frac{3}{4}+\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{9}{4}=\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{3}{2}\)
\(\Rightarrow P\ge\frac{1}{30}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}+\frac{9\left(a^2+b^2+c^2\right)}{4\left(ab+bc+ca\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}-\frac{3}{2}\)
\(=\frac{-22}{15}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}+\frac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}\)
\(\ge\frac{-22}{15}+2\sqrt{\left[\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}\right]\left[\frac{a^2+b^2+c^2}{15\left(ab+bc+ca\right)}\right]}=\frac{-22}{15}+\frac{2}{15}=\frac{-4}{3}\)
Dấu '=' xảy ra <=> a=b=c
Vậy GTNN của P là -4/3 khi a=b=c
x( x2 - y ) - x2( x - y ) + 1817
= x3 - xy - x3 + x2y + 1817
= x2y - xy + 1817
Thế x = -1 ; y = 100 ta được :
(-1)2.100 - (-1).100 + 1817
= 100 + 100 + 1817
= 2017
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)-24\)
\(\left(x^2+4x+x+4\right)\left(x^2+2x+3x+6\right)-24\)
\(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Đặt \(x^2+5x+4=a\) ta có
\(a.\left(a+2\right)-24\)
\(a^2+2a-24\)
\(a^2+6a-4a-24\)
\(a\left(a+6\right)-4\left(a+6\right)\)
\(\left(a+6\right)\left(a-4\right)\)
\(\left(x^2+5x+4+6\right)\left(x^2+5x+4-4\right)\)
\(\left(x^2+5x+10\right)\left(x^2+5x\right)\)
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
Đặt \(x^2+5x+5=a\)
Suy ra \(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
\(=\left(a+1\right)\left(a-1\right)-24\)
\(=a^2-1-24=a^2-25=\left(a-5\right)\left(a+5\right)\)
Do đó
\(\left(a+5\right)\left(a-5\right)=x\left(x^2+5x+10\right)\left(x+5\right)\)
Vậy \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=x\left(x^2+5x+9\right)\left(x+5\right)\)