1) Cho \(x+\sqrt{3}=2\)
Tính: \(P=x^5-3x^4-3x^3+6x^2-20x+2022\)
2) Rút gọn:
\(\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}-\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử phản chứng n ko chia hết cho 5
=> n có dạng là 5a + 1; 5b + 2; 5c + 3; 5d + 4
TH1: n = 5a + 1
=> \(n^2=\left(5a+1\right)^2=25a^2+10a+1\) ko chia hết cho 5
TH2: n = 5b + 2
=> \(n^2=\left(5b+2\right)^2=25b^2+20b+4\) ko chia hết cho 5
TH3: n = 5c + 3
=> \(n^2=\left(5c+3\right)^2=25c^2+30c+9\) ko chia hết cho 5
TH4: n = 5d + 4
=> \(n^2=\left(5d+4\right)^2=25d^2+40d+16\) ko chia hết cho 5
VẬY QUA 4 TRƯỜNG HỢP THÌ TA THẤY ĐIỀU GIẢ SỬ LÀ SAI
=> ĐIỀU PHẢI CHỨNG MINH: \(n^2⋮5\Rightarrow n⋮5\)
Giả sử n2 chia hết cho 5 và n không chia hết cho 5.
Nếu n=5k\(\pm\)1 \(\left(k\inℕ\right)\)thì \(n^2=25k^2\pm10k+1=5\left(5k^2\pm2k\right)+1⋮̸5\)
Nếu \(n=5k\pm2\left(k\inℕ\right)\)thì \(n^2=25k^2\pm20k+4=5\left(5k^2\pm4k\right)+4⋮̸5\)
Điều này mâu thuẫn với giả thiết n2 chia hết cho 5
Cái phần CMR: \(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2\le3\left(b-2\right)\) phải là giả thiết chứ nhỉ ??
ĐỀ GỐC BÀI NÀY LÀ ĐỀ CỦA CHUYÊN HƯNG YÊN NHÉ, THẦY CẬU RA LẠI THÔI !!!!!
DO: \(a\ge1;b\ge2;c\ge3\Rightarrow a-1;b-2;c-3\ge0\)
ĐẶT: \(a-1=x;b-2=y;c-3=z\)
=> \(gt\Leftrightarrow\hept{\begin{cases}x;y;z\ge0\\x^2+y^2+z^2\le3y\end{cases}}\)
=> \(a=x+1;b=y+2;c=z+3\)
=> \(P=\frac{1}{\left(x+1\right)^2}+\frac{4}{\left(y+2\right)^2}+\frac{8}{\left(z+3\right)^2}\)
TA ÁP DỤNG 2 BĐT SAU: \(\hept{\begin{cases}\left(x+1\right)^2\le2\left(x^2+1\right)\\\left(z+3\right)^2\le4\left(z^2+3\right)\end{cases}}\)
=> \(P\ge\frac{1}{2\left(x^2+1\right)}+\frac{8}{4\left(z^2+3\right)}+\frac{4}{\left(y+2\right)^2}\)
=> \(P\ge\frac{1}{2\left(x^2+1\right)}+\frac{4}{2\left(z^2+3\right)}+\frac{4}{\left(y+2\right)^2}\)
=> \(P\ge\frac{\left(1+2\right)^2}{2\left(x^2+z^2\right)+8}+\frac{4}{\left(y+2\right)^2}\) (BĐT CAUCHY - SCHWARZ)
=> \(P\ge\frac{9}{2\left(x^2+z^2\right)+8}+\frac{4}{\left(y+2\right)^2}\)
MÀ: \(x^2+z^2\le3y-y^2\) (gt)
=> \(P\ge\frac{9}{2\left(3y-y^2\right)}+\frac{4}{\left(y+2\right)^2}=\frac{9}{6y-2y^2}+\frac{4}{\left(y+2\right)^2}\)
TA SẼ CHỨNG MINH \(\frac{9}{6y-2y^2+8}+\frac{4}{\left(y+2\right)^2}\ge1\)
<=> \(\left(y-2\right)^2\left(2y^2+10y+9\right)\ge0\) (*)
(CHỖ NÀY CẬU QUY ĐỒNG MẪU SỐ, RÚT GỌN RỒI PHÂN TÍCH NHÂN TỬ SẼ RA ĐƯỢC NHƯ THẾ NÀY, MÌNH LÀM TẮT NHA)
DO: \(\hept{\begin{cases}\left(y-2\right)^2\ge0\forall y\\2y^2+10y+9\ge9>0\left(y\ge0\right)\end{cases}}\)
VẬY BĐT (*) LUÔN ĐÚNG !!!!!!
=> \(P\ge1\)
DẤU "=" XẢY RA <=> \(x=z=1;y=2\)
<=> \(a=2;b=4;c=4\)
TA XÉT PHÂN THỨC TỔNG QUÁT SAU:
\(A=\frac{1}{n\sqrt{n+1}+\left(n+1\right)\sqrt{n}}\)
\(A=\frac{1}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(A=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)
\(A=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}\)
\(A=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)
\(A=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
THAY LẦN LƯỢT CÁC GIÁ TRỊ n từ 1 => 2021 vào ta được:
=> \(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2020}}-\frac{1}{\sqrt{2021}}\)
=> \(A=1-\frac{1}{\sqrt{2021}}=\frac{\sqrt{2021}-1}{\sqrt{2021}}\)
VẬY \(A=\frac{\sqrt{2021}-1}{\sqrt{2021}}.\)
Ta có: \(\frac{1}{\left(a-1\right)\sqrt{a}+a.\sqrt{a-1}}=\frac{a-\left(a-1\right)}{\sqrt{a}.\sqrt{a-1}.\left(\sqrt{a}+\sqrt{a-1}\right)}\)
\(=\frac{\left(\sqrt{a}-\sqrt{a-1}\right)\left(\sqrt{a}+\sqrt{a-1}\right)}{\sqrt{a}.\sqrt{a-1}.\left(\sqrt{a}+\sqrt{a-1}\right)}=\frac{\sqrt{a}-\sqrt{a-1}}{\sqrt{a}.\sqrt{a-1}}\)
\(=\frac{\sqrt{a}}{\sqrt{a}.\sqrt{a-1}}-\frac{\sqrt{a-1}}{\sqrt{a}.\sqrt{a-1}}=\frac{1}{\sqrt{a-1}}-\frac{1}{\sqrt{a}}\)
Thay lần lượt các giá trị của a bằng \(2;3;4;........;2021\)ta được:
\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+.........+\frac{1}{\sqrt{2020}}-\frac{1}{\sqrt{2021}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2021}}=1-\frac{1}{\sqrt{2021}}\)
gt <=> \(x\sqrt{1-y^2}=1-y\sqrt{1-x^2}\)
<=> \(x^2\left(1-y^2\right)=1+y^2\left(1-x^2\right)-2y\sqrt{1-x^2}\)
<=> \(x^2-x^2y^2=1+y^2-x^2y^2-2y\sqrt{1-x^2}\)
<=> \(2y\sqrt{1-x^2}=y^2-x^2+1\)
<=> \(4y^2\left(1-x^2\right)=\left(y^2-x^2+1\right)^2\)
<=> \(4y^2-4x^2y^2=x^4+y^4+1-2x^2y^2-2x^2+2y^2\)
<=> \(x^4+y^4+2x^2y^2-2x^2-2y^2+1=0\)
<=> \(\left(x^4+y^4+2x^2y^2\right)-2\left(x^2+y^2\right)+1=0\)
<=> \(\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1=0\)
<=> \(\left(x^2+y^2-1\right)^2=0\)
<=> \(x^2+y^2-1=0\)
<=> \(x^2+y^2=1\)
VẬY TA CÓ ĐPCM.
Bài của Hermit thiếu điều kiện xác định + bài làm dài
\(-1\le x;y\le1\) theo bài ra ta có:
\(x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\left|x\right|\sqrt{1-y^2}+\left|y\right|\sqrt{1-y^2}\)
\(=\left|x\right|\sqrt{1-y^2}+\left|y\right|\sqrt{1-x^2}\le\frac{x^2+1-y^2}{2}+\frac{y^2+1-x^2}{2}=1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x\right|=\sqrt{1-y^2}\\\left|y\right|=\sqrt{1-x^2}\end{cases}\Leftrightarrow x^2=1-y^2\Leftrightarrow x^2+y^2=1\left(đpcm\right)}\)
Câu 1:
G/s \(\sqrt{7}\) là số hữu tỉ có thể viết dưới dạng phân số tối giản \(\frac{a}{b}\) \(\left(a,b\inℤ\right)\)
=> \(\frac{a}{b}=\sqrt{7}\)
<=> \(\left(\frac{a}{b}\right)^2=7\)
=> \(a^2=7b^2\)
=> \(a^2⋮b^2\) , mà theo đề bài phân số tối giản
=> a không chia hết cho b => a2 không chia hết cho b2
=> vô lý
=> \(\sqrt{7}\) là số vô tỉ
Câu 2:
a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=\left(a^2c^2+a^2d^2\right)+\left(b^2c^2+b^2d^2\right)\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b) Ta có: \(\left(ac+bd\right)^2=a^2c^2+2abcd+b^2d^2\)
\(=a^2c^2+2\sqrt{a^2d^2.b^2c^2}+b^2d^2\)
\(\le a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\) ( bất đẳng thức Cauchy )
Dấu "=" xảy ra khi: \(ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)
Kẻ AE⊥AN⇒ˆEAN=90o⇒ˆDAE=15o,AB=AD,ˆB=ˆD⇒ΔADE=ΔABM⇒AE=AMAE⊥AN⇒EAN^=90o⇒DAE^=15o,AB=AD,B^=D^⇒ΔADE=ΔABM⇒AE=AM
Theo hệ thức..... ⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2
Lại có AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2
Kẻ AE⊥AN⇒ˆEAN=90o⇒ˆDAE=15o,AB=AD,ˆB=ˆD⇒ΔADE=ΔABM⇒AE=AMAE⊥AN⇒EAN^=90o⇒DAE^=15o,AB=AD,B^=D^⇒ΔADE=ΔABM⇒AE=AM
Theo hệ thức..... ⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2
Lại có AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2
Vậy....
Bài 1: \(x+\sqrt{3}=2\Rightarrow x-2=-\sqrt{3}\Rightarrow\left(x-2\right)^2=3\Rightarrow x^2-4x+1=0\)
\(B=x^5-3x^4-3x^3+6x^2-20x-2022\)
\(=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+5\left(x^2-4x+1\right)+2017\)
\(=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2017\)
\(=2017\)
dễ nên mình đặt link câu a cho : https://olm.vn/hoi-dap/detail/189000873419.html
tí mình gửi qua tin nhắn nhé !
Đặt \(A=\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}\)
\(=6+2\sqrt{9-\left(5+2\sqrt{3}\right)}=6+2\sqrt{3+2\sqrt{3}+1}\)
\(=6+2\left(3+1\right)=6+6+2=14\)
Nên biểu thức tương đương với \(14-\sqrt{3}\)