các bạn ưi, giải giúp mk câu hỏi này nè:
tìm x biết:
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\)
Mk đag cần gấp, camon mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\frac{10}{17}}va\frac{3}{4}\)
Ta có \(\frac{10}{17}>\frac{9}{16}\)
\(\Rightarrow\sqrt{\frac{10}{17}}>\sqrt{\frac{9}{16}}\)
\(\Rightarrow\sqrt{\frac{10}{17}}>\frac{3}{4}\)
Học tốt
Dùng lệnh tex ( đề bài )
\(A=(4\sqrt{2}+3).\sqrt{41-24\sqrt{2}}\)
\(A=\left(4\sqrt{2}+3\right).\sqrt{9+2.3.4\sqrt{2}+32}\)
\(A=\left(4\sqrt{2}+3\right).\sqrt{\left(3+4\sqrt{2}\right)^2}\)
\(A=\left(4\sqrt{2}+3\right).\left(4\sqrt{2}+3\right)\)
\(A=\left(4\sqrt{2}+3\right)^2\)
Ta có: \(A=\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}}\right)^2\times\frac{x^2-1}{2}-\sqrt{1-x^2}\) \(\left(ĐK:x\ge1\right)\)
\(\Leftrightarrow A=\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x-1}.\sqrt{x+1}}\right)^2\times\frac{x^2-1}{2}-\sqrt{1-x^2}\)
\(\Leftrightarrow A=\frac{x+1+x-1+2\sqrt{x^2-1}}{x^2-1}\times\frac{x^2-1}{2}-\sqrt{1-x^2}\)
\(\Leftrightarrow A=\frac{2x+2\sqrt{x^2-1}}{2}-\sqrt{1-x^2}\)
\(\Leftrightarrow A=x+\sqrt{1-x^2}-\sqrt{1-x^2}\)
\(\Leftrightarrow A=x\)
Học tốt
ĐKXĐ : ...............
\(A=\left(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}}\right)^2\times\frac{x^2-1}{2}-\sqrt{1-x^2}\)
\(A=\left(\frac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{\left(x-1\right)\left(x+1\right)}}\right)^2\times\frac{x^2-1}{2}-\sqrt{1-x^2}\)
\(A=\frac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{x^2-1}\times\frac{x^2-1}{2}-\sqrt{1-x^2}\)
\(A=\frac{x+1+2\sqrt{x^2-1}+x-1}{2}-\sqrt{1-x^2}\)
\(A=\frac{2x+2\sqrt{x^2-1}-2\sqrt{1-x^2}}{2}\)
\(A=\frac{2x+2\sqrt{x^2-1}+2\sqrt{x^2-1}}{2}\)
\(A=\frac{2x+4\sqrt{x^2-1}}{2}\)
\(A=x+2\sqrt{x^2-1}\)
\(\left(x+\sqrt{y^2+1}\right)\left(y+\sqrt{x^2+1}\right)=1\)
<=> \(xy+\sqrt{x^2+1}\sqrt{y^2+1}-1=-x\sqrt{x^2+1}-y\sqrt{y^2+1}\)--->Bình phương 2 vế:
\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+1+2xy\sqrt{x^2+1}\sqrt{y^2+1}-2xy-2\sqrt{x^2+1}\sqrt{y^2+1}=\)
\(x^2\left(x^2+1\right)+y^2\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}\)
<=>\(2\left(1-xy-\sqrt{x^2+1}\sqrt{y^2+1}\right)=\left(x^2-y^2\right)^2\ge0\)=>\(1-xy-\sqrt{x^2+1}\sqrt{y^2+1}\ge0\)
<=>\(1-xy\ge\sqrt{x^2+1}\sqrt{y^2+1}>0\)---> Bình phương 2 vế:
\(1+x^2y^2-2xy\ge\left(x^2+1\right)\left(y^2+1\right)\)<=>\(0\ge\left(x+y\right)^2\ge0\)<=>\(x+y=0\Leftrightarrow x=-y\Rightarrow x^2=y^2\)
--> Thay vào A---> \(A=\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=\left(x+\sqrt{y^2+1}\right)\left(y+\sqrt{x^2+1}\right)=1\)
Đặt BC=a; AC=b; AB=c
Từ M dựng các đường vuông góc với BC; AC; AB cắt lần lượt tại D;E;F
Đặt MD=x; ME=y; MF=z
\(S_{ABC}=S_{MBC}+S_{MAC}+S_{MAB}=\frac{ax+by+cz}{2}\) áp dụng bđt cosi
\(\frac{ax+by+cz}{3}\ge\sqrt[3]{ax.by.cx}\Rightarrow\frac{ax+by+cz}{2}\ge\frac{3\sqrt[3]{ax.by.cz}}{2}\)
\(\Rightarrow S_{ABC}\ge\frac{3.\sqrt[3]{ax.by.cz}}{2}=\frac{3\sqrt[3]{abc}.\sqrt[3]{xyz}}{2}\Rightarrow\sqrt[3]{xyz}\le\frac{2.S_{ABC}}{3.\sqrt[3]{abc}}\)
\(\Rightarrow xyz\le\frac{8.S^3_{ABC}}{27abc}\) xyz lơn nhất khi \(xyz=\frac{8.S^3_{ABC}}{27abc}=const\)
Dấu = xảy ra khi ax=by=cz \(\Rightarrow S_{MBC}=S_{MAC}=S_{MAB}\)
Nối AM cắt BC tại K, Từ B và C dựng đường vuông góc với AK cắt AK lần lượt tại P và Q
Xét tg MAB và tg MAC có chung đáy AM và S(MAB)=S(MAC) => hai đường cao tương ứng BP=CQ
Xét tg vuông BKP và tg vuông CKQ có
^PBK = ^QCK (góc so le trong)
BP=CQ (cmt)
=> tg BKP = tg CKQ (hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau) => BK=CK => AM là trung tuyến của tg ABC
C/m tương tự ta cũng có BM, CM là trung tuyến của tg ABC
=> M là trọng tâm của tg ABC
\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\left(đk:x\ge1\right)\)
\(< =>\sqrt{x-2\sqrt{x-1}}^2=\left(\sqrt{x-1}-1\right)^2\)
\(< =>x-2\sqrt{x-1}=x-1+1-2\sqrt{x-1}\)
\(< =>x-2\sqrt{x-1}+2\sqrt{x-1}=x< =>x=x\)
Vậy phương trình trên thỏa mãn với mọi \(x\ge1\)
ĐKXĐ : \(x\ge1\)
Bình phương 2 vế lên ta có :
\(x-2\sqrt{x-1}=\left(\sqrt{x-1}-1\right)^2\)
\(\Leftrightarrow x-2\sqrt{x-1}=x-1-2\sqrt{x-1}+1\)
\(\Leftrightarrow x-2\sqrt{x-1}=x-2\sqrt{x-1}\)
\(\Leftrightarrow0x=0\)( luôn đúng với mọi \(x\ge1\))
Vậy ...............