Tìm x biết
x(2x-1)(x+5)-(2x2+1)(x+4,5)=3,5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TRẢ LỜI:
Thực hiện phép chia:
2x3 – 3x2 + x + a chia hết cho x + 2
⇔ số dư = a – 30 = 0
⇔ a = 30.
Cách 2: Phân tích 2x3 – 3x2 + x + a thành nhân tử có chứa x + 2.
2x3 – 3x2 + x + a
= 2x3 + 4x2 – 7x2 – 14x + 15x + 30 + a – 30
(Tách -3x2 = 4x2 – 7x2; x = -14x + 15x)
= 2x2(x + 2) – 7x(x + 2) + 15(x + 2) + a – 30
= (2x2 – 7x + 15)(x + 2) + a – 30
2x3 – 3x2 + x + a chia hết cho x + 2 ⇔ a – 30 = 0 ⇔ a = 30
x thôi sao 4x
đa thức 2x3 - x2 + 4x + a chia hết cho đa thức x + 2 khi - 5x mũ 14x+a - 14x+28=0
a - 28 = 0
a =0 +28
a =28
2x3 - x2 + 4x + a : x+2 =2x mũ 2 -5x+14
good luck!
Ta có : 3y2 + x2 + 2xy + 2x + 6y + 3 = 0
=> (x2 + 2xy + y2) + (2x + 2y) + 1 + (2y2 + 4y + 2) = 0
=> (x + y)2 + 2(x + y) + 1 + 2(y2 + 2y + 1) = 0
=> (x + y + 1)2 + 2(y + 1)2 = 0
=> \(\hept{\begin{cases}x+y+1=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)
Vậy x = 0 ; y = -1 là giá trị cần tìm
\(3x^2+x^2+2xy+2x+6y+3=0\)
\(\left(x^2+2xy+y^2\right)+\left(2y^2+4y+2\right)+\left(2y+2x\right)+1=0\)
\(\left(x+y\right)^2+2\left(y^2+2y+1\right)+2\left(x+y\right)+1=0\)
\(\left(x+y\right)^2+2\left(y+1\right)^2+2\left(x+y\right)+1=0\)
\(\left(x+y+1\right)^2+2\left(y+1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x+y+1=0\\y+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\y=-1\end{cases}}}\)
3y^2 + x^2 + 2xy + 2x + 6y + 3 = 0
<=> (x^2 + 2xy + y^2) + 2y^2 + 2x + 6y + 3 = 0`
<=> (x + y)^2 + 2(x + y) + 1 + 2y^2 + 4y + 2 = 0`
`<=> (x + y + 1)^2 + 2(y + 1)^2 = 0`
<=> {x + y + 1 = 0
{y + 1 = 0
<=> {x = 0
{y = -1
\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}=\frac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}=\frac{2\left(1+x^2\right)+2\left(1-x^2\right)}{\left(1-x^2\right)\left(1+x^2\right)}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}=\frac{4\left(1+x^4\right)+4\left(1-x^4\right)}{\left(1-x^4\right)\left(1+x^4\right)}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}=\frac{8\left(1+x^8\right)+8\left(1-x^8\right)}{\left(1-x^8\right)\left(1+x^8\right)}+\frac{16}{1+x^{16}}\)
\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}=\frac{16\left(1+x^{16}\right)+16\left(1-x^{16}\right)}{\left(1-x^{16}\right)\left(1+x^{16}\right)}=\frac{32}{1-x^{32}}\)
Ý đề bài là \(\left(2^n+1\right)\left(2^n+2\right)\) hay \(\left(2^{n+1}+2^{n+2}\right)\) vậy?
\(x^2-2xy+2y^2-x+8=\left(x-y-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{15}{2}\ge\frac{15}{2}\)
Dấu "=" xảy ra khi \(x=1,y=\frac{1}{2}\)
\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Leftrightarrow x\left(2x^2+10x-x-5\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\)
\(\Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\)
\(\Leftrightarrow-6x=8\Leftrightarrow x=-\frac{4}{3}\)
\(x\left(2x-1\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Leftrightarrow\left(2x^2-x\right)\left(x+5\right)-\left(2x^2+1\right)\left(x+4,5\right)=3,5\)
\(\Leftrightarrow\left(2x^3+9x^2-5x\right)-\left(2x^3+9x^2+x+4,5\right)=3,5\)
\(\Leftrightarrow2x^3+9x^2-5x-2x^3-9x^2-x-4,5=3,5\)
\(\Leftrightarrow-6x-4,5=3,5\)
\(\Leftrightarrow-6x=3,5+4,5\)
\(\Leftrightarrow-6x=8\)
\(\Leftrightarrow x=-\frac{8}{6}=-\frac{4}{3}\)