tính giá trị lớn nhất hoặc nhỏ nhất nếu có 1.A=x^2-12x+11
10.M=-4x^2+12x-7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hiệu vận tốc hai xe là 42-30=12(km/h)
Hai xe gặp nhau sau khi ô tô đi được:
21:12=1,75(giờ)
Olm chào em, Theo dữ liệu đề bài cho thấy, ta chưa biết ba điểm A; B; C có quan hệ như thế nào với nhau. Điểm nào nằm giữa điểm nào? Đồng nghĩa với việc sau bao lâu hai xe gặp nhau là chưa thể xác định
\(\dfrac{x+3}{15}=\dfrac{1}{3}\\ \dfrac{x+3}{15}=\dfrac{5}{15}\\ x+3=5\\ x=5-3\\ x=2\)
Vậy x = 2
Gọi số cần tìm có dạng là \(\overline{ab}\)
Chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên a-b=6
Nếu đổi chỗ hai chữ số cho nhau thì tổng của số mới và số cũ là 132 nên \(\overline{ab}+\overline{ba}=132\)
=>10a+b+10b+a=132
=>11a+11b=132
=>a+b=12
mà a-b=6
nên \(a=\dfrac{12+6}{2}=9;b=12-9=3\)
Vậy: Số cần tìm là 93
\(c,125\ge5^{n+1}>25\\ =>5^3\ge5^{n+1}>5^2\\ =>3\ge n+1>2\\ =>3-1\ge n>2-1\\ =>2\ge n>1\)
Mà n là số tự nhiên
=> n = 2
\(d,2\cdot16\ge2^n>4\\ =>2\cdot2^4\ge2^n>2^2\\ =>2^{1+4}\ge2^n>2^2\\ =>2^5\ge2^n>2^2\\ =>5\ge n>2\)
Mà n là số tự nhiên
=> n ∈ {3; 4; 5}
Chiều rộng của căn phòng là:
`1/3 xx 12 = 4(m)`
Diện tích căn phòng là:
`12 x 4 = 48(m^2)`
Đổi: 8dm = 0,8m
Diện tích viên gạch là:
`0,8 xx 0,8 = 0,64(m^2)`
Số viên gạch cần dùng là:
`48:0,64=75` (viên)
ĐS: ...
\(\left(a-x\right)y^3-\left(a-y\right)x^3+\left(x-y\right)a^3\\ =ay^3-xy^3-ax^3+x^3y+a^3x-a^3y\\ =\left(ay^3-ax^3\right)+\left(-xy^3+xy^3\right)+\left(a^3x-a^3y\right)\\ =a\left(y^3-x^3\right)+-xy\left(y^2-x^2\right)+a^3\left(x-y\right)\\ =a\left(y-x\right)\left(x^2+xy+y^2\right)-xy\left(y-x\right)\left(x+y\right)-a^3\left(y-x\right)\\ =\left(y-x\right)\left[a\left(x^2+xy+y^2\right)-xy\left(x+y\right)-a^3\right]\\ =\left(y-x\right)\left(ax^2+axy+ay^2-x^2y-xy^2-a^3\right)\)
\(125>5^{n+1}>25\\ \Rightarrow5^3>5^{n+1}>5^2\\ \Rightarrow3>n+1>2\\ \Rightarrow3-1>n>2-1\\ \Rightarrow2>n>1\)
Mà giữa 2 và 3 không có số tự nhiên nào
=> Không có n thỏa mãn
\(x^3-5x^2+8x-4\\ =\left(x^3-x^2\right)+\left(-4x^2+4x\right)+\left(4x-4\right)\\ =x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\\ =\left(x^2-4x+4\right)\left(x-1\right)\\ =\left[x^2-2\cdot x\cdot2+2^2\right]\left(x-1\right)\\ =\left(x-2\right)^2\left(x-1\right)\)
\(1,A=x^2-12x+11\\ =\left(x^2-12x+36\right)-25\\ =\left(x-6\right)^2-25\)
Ta có: `(x-6)^2>=0` với mọi x
`=>(x-6)^2-25>=-25` với mọi x
Dấu "=" xảy ra: `x-6=0<=>x=6`
\(2,M=-4x^2+12x-7\\ =\left(-4x^2+12x-9\right)+2\\ =-\left(4x^2-12x+9\right)+2\\ =-\left(2x-3\right)^2+2\)
Ta có: `(2x-3)^2>=0` với mọi x
`=>-(2x-3)^2<=0` với mọi x
`=>-(2x-3)^2+2<=2` với mọi x
Dấu "=" xảy ra: `2x-3=0<=>x=3/2`
1: \(A=x^2-12x+11\)
\(=x^2-12x+36-25\)
\(=\left(x-6\right)^2-25>=-25\forall x\)
Dấu '=' xảy ra khi x-6=0
=>x=6
10: \(M=-4x^2+12x-7\)
\(=-4x^2+12x-9+2\)
\(=-\left(2x-3\right)^2+2< =2\forall x\)
Dấu '=' xảy ra khi 2x-3=0
=>2x=3
=>\(x=\dfrac{3}{2}\)