cho các số a,b,c thỏa mãn 2(b2+bc+c2)=3(3-a2)
tìm giá trị lớn nhất và nhỏ nhất của biểu thức T=a+b+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ngại viết đặt cho nhanh :>
\(a^2-2a+b^2+4b+4c^2-4c+6\)
\(=\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)\)
\(=\left(a-1\right)^2+\left(b+2\right)^2+\left(2c+1\right)^2\)(*)
Ta có : (*) \(\ge0\)
Dấu ''='' xảy ra <=> \(a=1;b=-2;c=-\frac{1}{2}\)(**)
Vậy GTNN biểu thức là 0 <=> ta có (**)
a + b + c = 0
=> (a + b + c)2 = 0
=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0
=> a2 + b2 + c2 = -2(ab + 2bc + 2ca)
=> (a2 + b2 + c2)2 = [-2(ab + bc + ca)]2
=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2 = 4(a2b2 + b2c2 + c2a2 + 2ab2c + 2a2bc + 2abc2)
=> a4 + b4 + c4 = 4a2b2 + 4b2c2 + 4c2a2 + 8a2bc + 8ab2c + 8abc2 - 2a2b2 - 2b2c2 - 2a2c2
=> a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2c2a2 + 8abc(a + b + c)
=> a4 + b4 + c4= 2a2b2 + 2b2c2 + c2a2
=> a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2c2a2 + 2abc(a + b + c) (Vì a + b + c = 0)
=> a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2c2a2 + 2a2bc + 2ab2c + 2abc2
=> a4 + b4 + c4 = 2(a2b2 + b2c2 + c2a2 + a2bc + ab2c + abc2)
=> a4 + b4 + c4 = 2(ab + bc + ca)2 (đpcm)
Bạn tự vẽ hình:D
a,Ta có: + D là điểm đối xứng với H qua AC
=>AC là đường trung trực của t/g DAH
=>AD=AH(1)
+ E là điểm đối xứng với H qua AB
=>AB là đường trung trực của t/g EAH
=>AH=AE(2)
Từ (1) và (2)=>AD=AE(3)
Vì AE=AH=>t/g EAH cân tại A=>AB đồng thời là đường p/g
=>^EAB=^HAB
Vì AH=AD=>t/g HAD cân tại A=>AC đồng thời là đường p/g
=>^HAC=^DAC
Mà ^BAH+^CAH=90o
Do đó:^EAB + ^BAH + ^HAC + ^CAD
=> 2(^BAH) + 2(^HAC)
=> 2(^BAH + ^HAC)
=>2.90o =180o
=>E,A,D thẳng hàng (4)
Từ (3) và (4)=>D đx E qua A