cho hình chóp tứ giác đều biết cạch đáy bằng 30 cm trung đoạn bằng 10 cm tính diện tích toàn phần của hình chóp tứ giác đều
các bạn giúp mình nha !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Diện tích đáy: $24.3:3=24$ (cm2)
Chiều cao đáy tam giác: $24.2:4=12$ (cm)
Đáp án C.
Lời giải:
Vì $D$ là trung điểm $AC, $E$ là trung điểm $AB$ nên $ED$ là đường trung bình ứng với cạnh $BC$ của tam giác $ABC$
$\Rightarrow ED\parallel BC$
$\Rightarrow BEDC$ là hình thang.
Mà 2 góc ở đáy $\widehat{B}=\widehat{C}$ (do tam giác $ABC$ cân tại $A$)
$\Rightarrow BEDC$ là hình thang cân.
\(A=\left(x-2y\right)\left(x+2y\right)+\left(2y-x\right)^2+2023+4xy\)
\(A=x^2-\left(2y\right)^2+\left(4y^2-4xy+x^2\right)+2023+4xy\)
\(A=x^2-4y^2+4y^2-4xy+x^2+4xy\)
\(A=2x^2+2023\)
Vậy giá trị của biểu thức chỉ phụ thuộc vào x không phụ thuộc vào y
\(B=\left(2x-3\right)\left(x-y\right)-\left(x-y\right)^2+\left(y-x\right)\left(x+y\right)\)
\(B=2x^2-2xy-3x+3y-\left(x^2-2xy+y^2\right)+y^2-x^2\)
\(B=2x^2-2xy-3x+3y-x^2+2xy-y^2+y^2-x^2\)
\(B=-3x+3y\)
Vậy giá trị của biểu thức vẫn phụ thuộc vào biến
A = (\(x\) - 2y)(\(x\) + 2y) + (2y - \(x\))2 + 2023 + 4\(xy\)
A = \(x^2\) - 4y2 + 4y2 - 4\(xy\) + \(x^2\) + 2023 + 4\(xy\)
A = (\(x^2\) + \(x^2\)) - (4y2 - 4y2) + 2023 - (4\(xy\) - 4\(xy\))
A = 2\(x^2\) - 0 + 2023 - 0
A = 2\(x^2\) + 2023
Việc chứng minh A có giá trị không phụ thuộc vào giá trị của biến là điều không thể xảy ra.
Sửa đề:
Cho tam giác MNP cân tại M, điểm Q nằm giữa M và N, lấy điểm E nằm giữa M và P sao cho MQ = PE. Từ Q kẻ đường thẳng song song MP cách NP ở F. Chứng minh:
a) Tứ giác MQFE là hình bình hành
b) Trung điểm của MF thuộc đường thẳng QE
GIẢI
a) Do ∆MNP cân tại M (gt)
⇒ MN = MP
Mà MQ = PE (gt)
⇒ MN - MQ = MP - ME
⇒ QN = ME
Do QF // MP (gt)
⇒ ∠QFN = ∠MPN (đồng vị) (1)
Mà ∆MNP cân tại M
⇒ ∠MPN = ∠MNP
⇒ ∠MPN = ∠QNF (2)
Từ (1) và (2) ⇒ ∠QFN = ∠QNF
⇒ ∆QNF cân tại Q
⇒ QN = QF
Mà QN = ME (cmt)
⇒ QF = ME
Do QF // MP (gt)
⇒ QF // ME
Tứ giác MQFE có:
QF // ME (cmt)
QF = ME (cmt)
⇒ MQFE là hình bình hành
b) Gọi A là trung điểm của MF
Do MQFE là hình bình hành
⇒ A là trung điểm của hai đường chéo MF và QE
⇒ A là trung điểm của QE
⇒ A ∈ QE