Cho x,y,z là các số thực dương thỏa mãn x+y+z = 6. Chứng minh \(\frac{x+y}{xyz}\ge\frac{4}{9}\)
à em tách ra rồi Bunhia phân thức xong tịt luôn :( ai giúp em với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời :
*Tự vẽ hình nhé b.
Xét \(\Delta ABC\)có : D là trung điểm AB, E là trung điểm AC
=> DE là đường trung bình \(\Delta ABC\)
=> DE // BC mà H, M \(\in BC\)=> DE // HM
=> DEMH là hình thang (1).
Xét \(\Delta ABC\)có : D là trung điểm AB, M là trung điểm BC
=> DM là đường trung bình \(\Delta ABC\)
=> \(DM=\frac{1}{2}AC\)(*).
\(\Delta\)vuông ACH có : \(\widehat{ACH}=90^o\), HE là trung tuyến
=> \(HE=\frac{1}{2}AC\)(**)
Từ (*) và (**) => DM = HE (2).
Từ (1) và (2) => DEMH là hình thang cân (đpcm).
a, \(\frac{x}{xy-y^2}+\frac{2x-y}{xy-x^2}=\frac{x}{y\left(x-y\right)}+\frac{2x-y}{x\left(y-x\right)}\)
\(=\frac{x^2}{xy\left(x-y\right)}-\frac{2xy-y^2}{xy\left(x-y\right)}=\frac{\left(x-y\right)^2}{xy\left(x-y\right)}=\frac{x-y}{xy}\)
b, \(\frac{1}{x+1}+\frac{1}{x-1}+\frac{2x^2}{x^2-1}=\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{2x^2}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x-1+x+1+2x^2}{\left(x-1\right)\left(x+1\right)}=\frac{2x+2x^2}{\left(x-1\right)\left(x+1\right)}=\frac{2x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{2x}{x-1}\)
Ta có: \(36=\left[\left(x+y\right)+z\right]^2\ge4z\left(x+y\right)\)(1)
\(\left(x+y\right)^2\ge4xy\)(2)
Nhân theo vế (1) và (2), ta được: \(36\left(x+y\right)^2\ge16xyz\left(x+y\right)\Rightarrow\frac{x+y}{xyz}\ge\frac{4}{9}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y=z;x=y\\x,y>0;x+y+z=6\end{cases}}\Leftrightarrow x=y=\frac{3}{2};z=3\)