Cho tam giác ABC vuông tại A (AC>AB). Phân giác AD cắt BC tại D. Qua D kẻ Dx vuông góc với BC cắt AC tại E. Biết AB=5cm , AC=12cm
a, Tính BC,DB,DC
b, C/m tam giác DCE đồng dạng với tam giác ACB. Tính tỉ số đồng dạng của 2 tam giác trên
c, C/m AD .BC=BE.AC
d, C/m tam giác BDE vuông cân. Tính diện tích tam giác BDE
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{5}=\dfrac{CD}{12}\)
mà BD+CD=BC=13cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{5}=\dfrac{CD}{12}=\dfrac{BD+CD}{5+12}=\dfrac{13}{17}\)
=>\(BD=\dfrac{13}{17}\cdot5=\dfrac{65}{17}\left(cm\right);CD=\dfrac{13}{17}\cdot12=\dfrac{156}{17}\left(cm\right)\)
b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
\(\widehat{DCE}\) chung
Do đó: ΔCDE~ΔCAB
=>\(k=\dfrac{CD}{CA}=\dfrac{156}{17}:12=\dfrac{13}{17}\)
c: ΔCDE~ΔCAB
=>\(\dfrac{CD}{CA}=\dfrac{CE}{CB}\)
=>\(\dfrac{CD}{CE}=\dfrac{CA}{CB}\)
Xét ΔCDA và ΔCEB có
\(\dfrac{CD}{CE}=\dfrac{CA}{CB}\)
\(\widehat{C}\) chung
Do đó: ΔCDA~ΔCEB
=>\(\dfrac{DA}{EB}=\dfrac{CA}{CB}\)
=>\(DA\cdot CB=BE\cdot AC\)
d: ΔCDE~ΔCAB
=>\(\dfrac{DE}{AB}=\dfrac{CD}{CA}\)
=>\(\dfrac{DE}{5}=\dfrac{156}{17}:12=\dfrac{13}{17}\)
=>\(DE=\dfrac{13}{17}\cdot5=\dfrac{65}{17}\left(cm\right)\)
Xét tứ giác ABDE có \(\widehat{EAB}+\widehat{EDB}=90^0+90^0=180^0\)
nên ABDE là tứ giác nội tiếp
=>\(\widehat{DEB}=\widehat{DAB}=45^0\)
Xét ΔDEB vuông tại D có \(\widehat{DEB}=45^0\)
nên ΔDEB vuông cân tại D
ΔBDE vuông cân tại D
=>\(S_{BDE}=\dfrac{1}{2}\cdot DB\cdot DE=\dfrac{1}{2}\cdot DB^2=\dfrac{1}{2}\cdot\left(\dfrac{65}{17}\right)^2=\dfrac{1}{2}\cdot\dfrac{4225}{289}=\dfrac{4225}{578}\left(cm^2\right)\)