x-2 phần 5 + 7 = 1+x phần 3 - 8 - x phần 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
\(5x^2+5y^2+8xy+2x+2y+2\)
\(=x^2+2x+1+y^2+2y+1+4x^2+4y^2+8xy\)( uây =)) hợp lý vc )
\(=\left(x+1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2\)
Đặt \(\left(x+1\right)^2+\left(y+1\right)^2+4\left(x+y\right)^2=0\)
Dấu ''='' xảy ra : \(x=-1;y=-1\)( ktm ) m có chép sai đề ko ?
Câu 2 :
\(M=\left(x+y\right)^{2020}+\left(x-2\right)^{2021}+\left(y+1\right)^{2019}\)
Ta có : \(\left(x+y\right)^{2020}\ge0\forall x;y\);\(\left(x-2\right)^{2021}\ge0\forall x\);\(\left(y+1\right)^{2019}\ge0\forall y\)
Dấu ''='' xảy ra <=> \(x=2;y=-1\)
Vậy biểu thức nhận giá trị \(M=1\)
Gọi a , b , c là độ dài ba cạnh của tam giác , thế thì p = a + b + c ( và p - a ; p - b ; p - c > 0 )
Theo công thức Hêrông :
\(S^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right)\)
Ta có : \(S^2\le p.[\frac{\left(p-a\right)+\left(p-b\right)+\left(p-c\right)}{3}\)\(]^3\)\(=\frac{p^4}{27}\)
Để ý rằng dấu '' = '' chỉ xảy ra khi :
\(p-a=p-b=p-c\Leftrightarrow\Delta ABC\)đều
Gọi M , B là trung điểm của DE , EF
a) Xét hai tam giác vuông \(\Delta AEM\)và \(\Delta ADM\)có :
AM chung ; EM = DM
=> \(\Delta AEM=\Delta ADM\)( hai cạnh góc vuông )
=> AE = AD và \(\widehat{A2}\)\(=\widehat{A1}\)(1)
Chứng minh tương tự , ta có : AE = AF và \(\widehat{A4}\)\(=\widehat{A3}\)(2)
Từ (1) , (2) suy ra :
AE = AD = AF và \(\widehat{A1}+\widehat{A2}+\widehat{A3}+\widehat{A4}=2.\left(\widehat{A2}+\widehat{A3}\right)=2.90^O=180^O\)
=> AD = AF và D,A,F thẳng hàng
=> D và F đối xứng nhau qua A ( đpcm )
b) F đối xứng với E qua N => EN\(\perp\)AC , tương tự EM\(\perp\)EN
=> AMEN là hình chữ nhật => EM\(\perp\)EN
=>\(\Delta DEF\)là tam giác vuông tại E
c) Xét \(\Delta ABD\)và \(\Delta ABE\)ta có :
AB chung ; AD = AE ; \(\widehat{A1}=\widehat{A2}\)
=> \(\Delta ABD=\Delta ABE\)( c.g.c ) => BD = BE
Tương tự ta chứng minh được CE = CF
Suy ra : BD + CF = BE + CE = BC ( đpcm )
d) EN \(||\)AB => \(\widehat{E1}=\widehat{B1}\)mà \(\widehat{B1}=\widehat{B2}\) ( do \(\Delta ABD=\Delta ABE\)) và \(\widehat{E1}=\widehat{F1}\)
=> \(\widehat{B2}=\widehat{F1}\)
Lại có AB \(||\)EF => BD \(||\)CF
=> BDFC là hình thang ( CF , BD là hai cạnh đáy )
e) Để BDCF là hình bình hành thì CF = BD mà CF = CE ; BD = BE
=> CE = BE <=> E là trung điểm của BC
f) Để BDFC là hình chữ nhật thì BD\(\perp\)BC mà \(\widehat{B2}=\widehat{B1}\)
=> \(\widehat{B2}=\widehat{B1}=45^O\Rightarrow\Delta ABC\)vuông cân ở A
Đồng thời kết hợp với điều kiện để BDFC là hình bình hành tức E là trung điểm của BC
Khi đó BDFC sẽ là hình chữ nhật
Sửa lại đề: \(\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}+\frac{1}{1-x}\)
\(P=\frac{x^2+2}{x^3-1}+\frac{x+1}{x^2+x+1}+\frac{1}{1-x}\)
\(=\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x^2-1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{x^2+2+x^2-1-x^2-x-1}{MTC}=\frac{x^2-x}{MTC}\)
\(=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x}{x^2+x+1}\)
BT <=>
\(A=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)
\(=\frac{x^2-4}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{x^2-9-x-3}{MTC}=\frac{x^2-x-12}{MTC}\)
A = \(\frac{x+2}{x+3}\)\(-\frac{5}{X^2+X-6}\)\(+\frac{1}{2-X}\)
A= \(\frac{x+2}{x+3}\)\(-\frac{5}{\left(X-2\right)\left(X+3\right)}\)\(-\frac{1}{X-2}\)
A = \(\frac{\left(X+2\right)\left(X-2\right)}{\left(X-2\right)\left(X+3\right)}\)\(-\frac{5}{\left(X-2\right)\left(X+3\right)}\)\(-\frac{X+3}{\left(X-2\right)\left(X+3\right)}\)
A= \(\frac{\left(X+2\right)\left(X-2\right)-5-\left(X+3\right)}{\left(X-2\right)\left(X+3\right)}\)
A= \(\frac{X-4-5-X-3}{\left(X-2\right)\left(X+3\right)}\)
A= \(-\frac{12}{\left(X-2\right)\left(X+3\right)}\)
Với \(x\ne\pm3\)ta có : \(A=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)
\(=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x+3\right)\left(x-4\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x-3\right)\left(x-1\right)}{\left(x-3\right)\left(x+3\right)}\right):\frac{x+2}{x+3}\)
\(=\frac{x^2-x-12-\left(x^2-4x+3\right)+21}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{x+2}=\frac{3x+6}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{x+2}\)
\(=\frac{3\left(x+2\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+2\right)}=\frac{3}{x-3}\)
\(A=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right)\div\left(1-\frac{1}{x+3}\right)\)
\(=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{x-4}{x-3}-\frac{x-1}{x+3}\right)\div\left(1-\frac{1}{x+3}\right)\)
\(=\left(\frac{21}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-4\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right)\div\left(\frac{x+3}{x+3}-\frac{1}{x+3}\right)\)
\(=\left(\frac{21+x^2-x-12-x^2+4x-3}{\left(x-3\right)\left(x+3\right)}\right)\div\left(\frac{x+3-1}{x+3}\right)\)
\(=\frac{3x+6}{\left(x-3\right)\left(x+3\right)}\div\frac{x+2}{x+3}\)
\(=\frac{3\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\div\frac{x+2}{x+3}\)
\(=\frac{3\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}\times\frac{x+3}{x+2}\)
\(=\frac{3\left(x+2\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)\left(x+2\right)}=\frac{3}{x-3}\)
Có:\(x^4+64y^4\)
\(=\left(x^4+16x^2y^2+64y^4\right)-16x^2y^2\)
\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)
\(=\left(x^2+4xy+8y^2\right)\left(x^2-4xy+8y^2\right)\)
Linz
= 64y4 + 32xy3 + 8y2x2 - 32xy3 -16x2y2 - 4x3y + 8x2y2 +4x3y +x4
= 8y2 ( 8y2 + 4xy + x2 ) - 4xy ( 8y2 + 4xy + x2 ) + x2 ( 8y2 + 4xy + x2 )
= ( 8y2 - 4xy + x2 ) ( 8y2 + 4xy + x2 )
a) Ta có:
\(A=1+2+2^2+2^3+...+2^{2015}\)
\(A=\left(1+2+2^2\right)+...+\left(2^{2014}+2^{2015}+2^{2016}\right)-2^{2016}\)
\(A=7+...+7\cdot2^{2014}-2^{2016}\)
\(A=7\cdot\left(1+...+2^{2014}\right)-2^{2016}\)
Lại có: \(2^4\equiv2\left(mod7\right)\Leftrightarrow\left(2^4\right)^{504}=2^{2016}\equiv2\left(mod7\right)\)
\(\Rightarrow A\equiv-2\left(mod7\right)\)
Vậy A chia 7 dư -2 hoặc 5
b) \(PT\Leftrightarrow x\left(x+2\right)\left(x+1\right)=0\)
\(\Rightarrow x\in\left\{0;-2-;-1\right\}\)
=> Tổng các nghiệm là: -3
\(\frac{x-2}{5}+7=\frac{x+1}{3}-\frac{8-x}{10}\)
\(\Leftrightarrow\frac{x-2+35}{5}=\frac{10x+10}{30}-\frac{24-3x}{30}\)
\(\Leftrightarrow\frac{x+33}{5}=\frac{13x-14}{30}\Leftrightarrow\frac{6x+198}{30}=\frac{13x-14}{30}\)
Khử mẫu : \(6x+198=13x-14\)
\(\Leftrightarrow-7x=-14-198=212\Leftrightarrow x=-\frac{212}{7}\)
\(\frac{x-2}{5}+7=\frac{1+x}{3}-\frac{8-x}{10}\)
\(\Leftrightarrow\frac{x-2}{5}+\frac{35}{5}=\frac{10\left(1+x\right)}{30}-\frac{3\left(8-x\right)}{30}\)
\(\Leftrightarrow\frac{x-2+35}{5}=\frac{10+10x-24+3x}{30}\)
\(\Leftrightarrow\frac{x+33}{5}=\frac{13x-14}{30}\)
\(\Leftrightarrow\frac{6\left(x+33\right)}{30}=\frac{13x-14}{30}\)
\(\Leftrightarrow6x+198=13x-14\)
\(\Leftrightarrow6x-13x=-14-198\)
\(\Leftrightarrow-7x=-212\)
\(\Leftrightarrow x=\frac{212}{7}\)