Rút gọn biểu thức
3(x-1)-2 nhân giá trị tuyệt đối x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) - g(x) + h(x) = 2x3 - 2x2 - 3x + 1 - ( 2x3 + x - 2 ) + 2x2 + x + 1
= 2x3 - 2x + 2 - 2x3 - x + 2
= -3x + 4
f(x) - g(x) + h(x) = 0 <=> -3x + 4 = 0 <=> x = 4/3
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(\Leftrightarrow5.5^{x+3}-3.5^{x+3}=2.5^{11}\)
\(\Leftrightarrow2.5^{x+3}=2.5^{11}\)
\(\Leftrightarrow x+3=11\)
\(\Leftrightarrow x=8\)
\(\frac{3}{7}+\frac{1}{14}=\frac{6}{14}+\frac{1}{14}=\frac{7}{14}=\frac{1}{2}\)
\(-2.\left|\frac{2}{5}x-\frac{3}{10}\right|=3\frac{1}{5}\)
\(-2.\left|\frac{2}{5}x-\frac{3}{10}\right|=\frac{16}{5}\)
\(\left|\frac{2}{5}x-\frac{3}{10}\right|=\frac{16}{5}\div\left(-2\right)\)
\(\left|\frac{2}{5}x-\frac{3}{10}\right|=-\frac{8}{5}\)
\(\Rightarrow\)\(\frac{2}{5}x-\frac{3}{10}=\frac{8}{5}\)hoặc \(-\frac{8}{5}\)
Ta xét 2 trường hợp :
Th 1 :
\(\frac{2}{5}x-\frac{3}{10}=\frac{8}{5}\)
\(\frac{2}{3}x=\frac{8}{5}+\frac{3}{10}\)
\(\frac{2}{3}x=\frac{19}{10}\)
\(x=\frac{19}{4}\)
Th 2 :
\(\frac{2}{5}x-\frac{3}{10}=-\frac{8}{5}\)
\(\frac{2}{3}x=-\frac{8}{5}+\frac{3}{10}\)
\(\frac{2}{3}x=\frac{-13}{10}\)
\(x=\frac{-13}{4}\)
Vậy \(x\in\){ \(\frac{19}{4}\); \(\frac{-13}{4}\)}
Ta có : \(\widehat{K_1}=\widehat{K_3}=60^0\)(do đối đỉnh)
Ta lại có : \(\widehat{K_3}+\widehat{K_2}=180^0\)(do kề bù)
mà \(\widehat{H_1}+\widehat{K_2}+\widehat{K_3}=240^0\)
\(\Rightarrow\widehat{H_1}=60^0\)
\(\Rightarrow\widehat{H_1}=\widehat{K_3}\)
mà 2 góc này là 2 góc ở vị trí đồng vị
\(\Rightarrow a//b\)
3( x - 1 ) - 2| x + 3 | (*)
Với x < -3 (*) trở thành 3x - 3 + 2( x + 3 ) = 3x - 3 + 2x + 6 = 5x + 3
Với x >= -3 (*) trở thành 3x - 3 - 2( x + 3 ) = 3x - 3 - 2x - 6 = x - 9