Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: AB là đường trung trực của DH
=>AD=AH và BD=BH; AB\(\perp\)DH tại trung điểm của DH
Ta có: AC là đường trung trực của HE
=>AH=AE; CH=CE; AC là phân giác của góc HAE
Ta có: AD=AH
AH=AE
Do đó: AD=AE
=>ΔADE cân tại A
b: Ta có: AB\(\perp\)HD tại trung điểm của HD
=>M là trung điểm của HD
Xét ΔIMH vuông tại M và ΔIMD vuông tại M có
IM chung
MH=MD
Do đó: ΔIMH=ΔIMD

Để thu gọn đa thức \( n(x) = x(3x^4 + x^3 - 4) - (4x^3 - 7 + 2x^4 + 3x^5) \), ta thực hiện các bước sau: 1. Nhân trong ngoặc đầu tiên: \( x(3x^4 + x^3 - 4) = 3x^5 + x^4 - 4x \). 2. Nhân trong ngoặc thứ hai: \( -(4x^3 - 7 + 2x^4 + 3x^5) = -4x^3 + 7 - 2x^4 - 3x^5 \). 3. Kết hợp các kết quả: \( n(x) = 3x^5 + x^4 - 4x - 4x^3 + 7 - 2x^4 - 3x^5 \). 4. Thu gọn đa thức: \( n(x) = 3x^5 - 3x^5 + x^4 - 2x^4 - 4x^3 - 4x + 7 \). 5. Kết quả cuối cùng: \( n(x) = -x^4 - 4x^3 - 4x + 7 \). Vậy đa thức đã được thu gọn thành \( n(x) = -x^4 - 4x^3 - 4x + 7 \).
= 3x^5 + x^4 - 4x - 4x^3 + 7 - 2x^4 - 3x^5
=( 3x^5 - 3x^5 ) + (x^4 - 2x^4) - 4x^3 - 4x + 7
= -x^4 - 4x^3 - 4x + 7
( hehe>=)) ko bt có đúng ko nữa, nhưng mà tin tui đi)
Bài 1: Chứng tỏ rằng các đa thức sau không phụ thuộc vào biến : a)M=(2x+1)(5x-3)-(5x+2)(2x-7-30(x-5)

Để chứng minh rằng đa thức M=(2x+1)(5x-3)-(5x+2)(2x-7) không phụ thuộc vào biến x, ta sẽ chứng minh rằng M không chứa biến x. Đầu tiên, ta sẽ phân tích đa thức M:
M = (2x+1)(5x-3) - (5x+2)(2x-7) = 10x^2 - 6x + 5x - 3 - 10x^2 + 14x - 5x - 14 = 10x^2 - x - 3 - 10x^2 - 5x - 14 = -6x - 17
Ta thấy rằng đa thức M không chứa biến x, nên ta kết luận rằng đa thức M=(2x+1)(5x-3)-(5x+2)(2x-7) không phụ thuộc vào biến x.

Sửa đề: tia phân giác của góc A
ΔABC cân tại A
mà AK là đường phân giác
nên AK là đường trung tuyến
Xét ΔABC có
AK,BD là các đường trung tuyến
AK cắt BD tại K
Do đó: K là trọng tâm của ΔABC
Xét ΔABC có
K là trọng tâm
I là trung điểm của AB
Do đó: C,K,I thẳng hàng

a, Do tam giác ABD và ACE là tam giác đều nên ta có:
∠ABD = ∠ACE = 60°
∠BAD = ∠CAE = 60°
Do tam giác ABC vuông tại A nên ∠BAC = 90°. Từ đó suy ra ∠BAE = ∠CAD = 30°.
Vậy tam giác ABE và tam giác ADC đều là tam giác vuông cân tại A, do đó tam giác ABE = tam giác ADC.
b, Gọi H là giao điểm của AD và BE. Do tam giác ABE và tam giác ADC bằng nhau nên AH = AD.
Từ đó suy ra ∠BHE = ∠DHE. Do EH là đường cao của cả hai tam giác BHD và DHE nên tam giác BHE = tam giác DHE.
Vậy ta có DE = BE.

Các điều kiện về $x,y$ là gì bạn nên ghi chú rõ ra để mọi người hỗ trợ nhé.

Lời giải:
Nếu $x\geq 2$ thì:
$P=x-1+2024(x-2)+2025=2025x-2024\geq 2025.2-2024=2026$
Nếu $1\leq x< 2$ thì:
$P=x-1+2024(2-x)+2025=6072-2023x> 6072-2023.2=2026$
Nếu $x< 1$ thì:
$P=1-x+2024(2-x)+2025=6073-2025x> 6073-2025.1=4048$
Từ 3 TH trên suy ra $P_{\min}=2026$. Giá trị này đạt tại $x\geq 2$

a) Vì tam giác ABC cân tại A nên ta có:
Góc BAC = Góc BCA = 47o
Góc ABC = 180o - 2 x 47o = 86o
b) Ta có:
AB = AC (do tam giác ABC cân tại A)
BM = MC (do M là trung điểm của BC)
∠ABM = ∠ACM = 90o - 47o = 43o (do ∠BAC = 47o và ∠BAM, ∠CAM là góc vuông)
Vậy, 𝛥𝐴𝐵𝑀 = 𝛥𝐴𝐶𝑀 (theo định lý tam giác cân)
c) Ta có:
AM + BM = AB + BM (do AB = AM)
AB + BM > AC (do tổng độ dài hai cạnh của một tam giác luôn lớn hơn cạnh còn lại)
Vậy, AM + BM > AC
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
b: ΔABD=ΔACD
=>BD=CD
mà BD<BH(ΔBDH vuông tại D)
nên CD<BH
mà AB=AC
nên AB+BH>AC+CD
c: ΔADB=ΔADC
=>\(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
=>AD\(\perp\)BC
Xét ΔABC có
BE,CK,AD là các đường cao
Do đó: BE,CK,AD đồng quy