Cho tam giác ABC, các đường cao AD, BE, CF. Đường tròn đi qua D, E, F cắt BC,CA, AB theo thứ tự ở M, N, P. Chứng minh rằng các đường thẳng kẻ từ M vuông góc với BC, kẻ từ N vuông góc với AC, kẻ từ P vuông góc với AB đồng quy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
TL: Ta có : a+b+c=1 nên :
\(\left(a+b+c\right)^2=1\)
=>\(a^2+b^2+c^2+2ab+2bc+2ac=1\) =>\(2ab+2bc+2ac=1-a^2-b^2-c^2\) => \(2\left(ab+bc+ac\right)=1-a^2-b^2-c^2\) Vì \(1-a^2-b^2-c^2< 1\) => 2(ab+bc+ac) < 1
=> ab+bc+ac< 1/2 (đpcm)
#hoctot
#phanhne
Ta có:
a+b+c=1
⇒(a+b+c)2=1
⇒a2+b2+c2+2ab+2ac+2bc=1
⇒2ab+2ac+2bc=1−a2−b2−c2
⇒2(ab+ac+bc)=1−a2−b2−c2
Vì 1−a2−b2−c2<1
⇒2(ab+ac+bc)<1
⇒ab+ac+bc < \(\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
áp dụng B.C.S dạng phân thức
\(\frac{1}{ac}+\frac{1}{bc}\ge\frac{\left(1+1\right)^2}{c.\left(a+b\right)}\ge\frac{4}{\frac{\left(a+b+c\right)^2}{4}}=16\)
\(\Rightarrowđpcm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nhưng trước hết làm cho nó đẹp lại cái đã:v Bài toán gì đâu mà cho toàn phân thức xấu xí, lần sau bảo người ra đề chọn hệ số đẹp hơn nha zZz Cool Kid zZz :DD
\(P=\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)}{30\left(a^2+b^2+c^2\right)}+\left(\frac{\left(a^3+b^3+c^3\right)}{4abc}-\frac{3}{4}\right)+\frac{3}{4}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}\)
\(=\frac{47}{60}+\frac{\left(ab+bc+ca\right)}{15\left(a^2+b^2+c^2\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{4abc}\)
\(=\frac{47}{60}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{\frac{4}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}\)
\(=\frac{47}{60}+\frac{ab+bc+ca}{15\left(a^2+b^2+c^2\right)}-\frac{131\left(a^2+b^2+c^2\right)}{60\left(ab+bc+ca\right)}+\frac{9\left(a^2+b^2+c^2-ab-bc-ca\right)}{4\left(ab+bc+ca\right)}\)
\(=\frac{47}{60}+\frac{1\left(a^2+b^2+c^2\right)}{15\left(ab+bc+ca\right)}-\frac{131\left(ab+bc+ca\right)}{60\left(a^2+b^2+c^2\right)}\)
Đặt \(x=\frac{a^2+b^2+c^2}{ab+bc+ca}\Rightarrow x\ge1\). Ta cần tìm min:
\(P=f\left(x\right)=\frac{47}{60}+\frac{1}{15}x-\frac{131}{60x}\)
\(=\frac{47}{60}+\frac{1}{15}x+\frac{1}{15x}-\frac{9}{4x}\)
\(\ge\frac{47}{60}+\frac{2}{15}-\frac{9}{4}=-\frac{4}{3}\)
Đẳng thức xảy ra khi \(a=b=c\)
P/s: Tính dùng sos nhưng nghĩ lại ko nên lạm dụng nên dùng cách khác:))
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình :
A M' E N C M D N' B F B I O H
Bn tự lm phần giải nha
hc tốt