giải pt \(\sqrt{x-1+2\sqrt{x-2}}-\sqrt{x-1-2\sqrt{x-2}}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Do tam giác ABC nội tiếp nên sẽ có 1 cạnh là đường kính (BC)
Xét tam giác ABC có :\(AB^2+AC^2=\left(R\sqrt{2-\sqrt{3}}\right)^2+\left(R\sqrt{2+\sqrt{3}}\right)^2\)
\(=2R^2-R^2\sqrt{3}+2R^2+R^2\sqrt{3}\)
\(=4R^2\)
\(=BC^2\)
( do BC là đường kính, BC=2R)
Vậy tam giác ABC là tam giác vuông
\(\sin B=\frac{AC}{BC}=\frac{R\sqrt{2+\sqrt{3}}}{2R}=\frac{\sqrt{2+\sqrt{3}}}{2}\)
suy ra góc B=75 độ
suy ra góc C=90 độ -75 độ =15 độ
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=\sqrt{\frac{\sqrt{5}\left(8\sqrt{5}-3\sqrt{35}\right)}{\left(8\sqrt{5}+3\sqrt{35}\right)\left(8\sqrt{5}-3\sqrt{35}\right)}}\)\(\left(3\sqrt{2}+\sqrt{14}\right)\)
\(=\sqrt{\frac{40-15\sqrt{7}}{5}}.\left(3\sqrt{2}+\sqrt{14}\right)\)
\(=\sqrt{8-3\sqrt{7}}\left(3\sqrt{2}+\sqrt{14}\right)\)
\(=\frac{\sqrt{2}\sqrt{8-3\sqrt{7}}}{\sqrt{2}}\left(3\sqrt{2}+\sqrt{14}\right)\)
\(=\frac{\sqrt{16-3\sqrt{7}}}{\sqrt{2}}\left(3\sqrt{2}+\sqrt{14}\right)\)
\(=\frac{\sqrt{\left(3-\sqrt{7}\right)^2}}{\sqrt{2}}\left(3\sqrt{2}+\sqrt{14}\right)\)
\(=\frac{\left(3-\sqrt{7}\right)}{\sqrt{2}}.\sqrt{2}\left(3+\sqrt{7}\right)\)
\(=9-7\)
\(=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)