Ông An gửi tiết kiệm 500 triệu đồng vào ngân hàng theo hình thức lãi kép với lãi suất 0,7% tháng. Hỏi tối thiểu là bao nhiêu tháng ông An sẽ có được số tiền là 600triệu đồng cả vốn lẫn lãi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: \(\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2021}{2022}\)
=>\(\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2021}{2022}\)
=>\(2\left(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2021}{2022}\)
=>\(2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2021}{2022}\)
=>\(2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2021}{2022}\)
=>\(1-\dfrac{2}{x+1}=\dfrac{2021}{2022}\)
=>\(\dfrac{2}{x+1}=\dfrac{1}{2022}\)
=>x+1=4044
=>x=4043
d: \(\left(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{8\cdot9\cdot10}\right)\cdot x=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{8\cdot9\cdot10}\right)\cdot x=\dfrac{23}{45}\)
=>\(x\cdot\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}-\dfrac{1}{9\cdot10}\right)=\dfrac{23}{45}\)
=>\(\dfrac{x}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{9\cdot10}\right)=\dfrac{23}{45}\)
=>\(\dfrac{x}{2}\left(\dfrac{1}{2}-\dfrac{1}{90}\right)=\dfrac{23}{45}\)
=>\(\dfrac{x}{2}\cdot\dfrac{44}{90}=\dfrac{23}{45}\)
=>\(x\cdot\dfrac{22}{90}=\dfrac{23}{45}\)
=>\(x\cdot\dfrac{11}{45}=\dfrac{23}{45}\)
=>\(x=\dfrac{23}{45}:\dfrac{11}{45}=\dfrac{23}{11}\)
ĐKXĐ: x<>-3
\(\dfrac{x+3}{4}=\dfrac{16}{x+3}\)
=>\(\left(x+3\right)^2=4\cdot16=64\)
=>\(\left[{}\begin{matrix}x+3=8\\x+3=-8\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=5\left(nhận\right)\\x=-11\left(nhận\right)\end{matrix}\right.\)
5,3 - \(x\) + 4,5 = 7,2
5,3 - \(x\) = 7,2 - 4,5
5,3 - \(x\) = 2,7
\(x\) = 5,3 - 2,7
\(x\) = 2,6
- \(\dfrac{3}{4}\).\(\dfrac{4}{7}\) = - \(\dfrac{3}{7}\)
- \(\dfrac{3}{5}\).\(\dfrac{3}{7}\) + \(\dfrac{2}{-5}\) = \(\dfrac{-9}{35}\) - \(\dfrac{2}{5}\) = \(-\dfrac{9}{35}\) - \(\dfrac{14}{35}\) = \(\dfrac{-23}{35}\)
\(\dfrac{-3}{4}\). \(\dfrac{4}{7}\) \(\ne\) -\(\dfrac{3}{5}\).\(\dfrac{3}{7}\) + \(\dfrac{2}{-5}\)
y x 2,1 + y/10 + y x 6,8 + y = 30,4
y x (2,1 + 1/10 + 6,8 + 1) = 30,4
y x 10 = 30,4
y = 3,04
a) x = 2 A = (2 - 6)/(2 + 2) = -1
b) B = 6/(x - 2) + x/(x + 2) - 8/(x² - 4)
= [6(x + 2) + x(x - 2) - 8]/[(x - 2)(x + 2)]
= (6x + 12 + x² - 2x - 8)/[(x - 2)(x + 2)]
= (x² + 4x + 4)/[(x - 2)(x + 2)]
= (x + 2)²/[(x - 2)(x + 2)]
= (x + 2)/(x - 2)
c) P = A.B
= (x - 6)/(x + 2) . (x + 2)/(x - 2)
= (x - 6)/(x - 2)
Để P = 2/3 thì
(x - 6)/(x - 2) = 2/3
3(x - 6) = 2(x - 2)
3x - 18 = 2x - 4
3x - 2x = -4 + 18
x = 14
Vậy x = 14 thì P = 2/3
Lời giải:
$A=\frac{1}{2^2}(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1012^2})$
$<\frac{1}{4}(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1011.1012})$
$=\frac{1}{4}(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1011}-\frac{1}{1012})$
$=\frac{1}{4}(1-\frac{1}{1012})$
$=\frac{1}{4}-\frac{1}{4.1012}< \frac{1}{4}$
Điều kiện của $a,b$ là gì bạn nên ghi rõ ra thì mới tính được giá trị lớn nhất của P.
Gọi số tháng tối thiểu để ông An có tổng cộng là 600 triệu đồng là x(tháng)
(ĐK: x>0)
Sau 1 tháng, số tiền ông An có được là \(500\cdot\left(1+0,7\%\right)\left(triệuđồng\right)\)
=>Sau x tháng, số tiền ông An có được là:
\(500\left(1+0,7\%\right)^x\left(triệuđồng\right)\)
Theo đề, ta có:
\(500\left(1+0,7\%\right)^x=600\)
=>\(\left(1+0,7\%\right)^x=1,2\)
=>\(x=log_{1+0,7\%}1,2\simeq26\)
Vậy: ông An cần gửi ít nhất 26 tháng
12 tháng