CMR: a^2 /(b+c) + b^2/(a + c) + c^2/(a + b) >a+b+c/2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NB
1
TT
0
21 tháng 6 2020
C1
Dễ có
\(\frac{x^2}{x-1}\ge4\Leftrightarrow\left(x-2\right)^2\ge0\) ( đúng )
\(P\ge2\sqrt{\frac{x^2}{y-1}\cdot\frac{y^2}{x-1}}=2\sqrt{\frac{x^2}{x-1}\cdot\frac{y^2}{y-1}}\ge8\)
C2:
Sử dụng Cauchy Schwarz :
\(P=\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)
Ta đi chứng minh \(P\ge8\) thật vậy
\(BĐT\Leftrightarrow\left(x+y\right)^2\ge8\left(x+y\right)-16\)
\(\Leftrightarrow\left(x+y-4\right)^2\ge0\) ( đúng )
Vậy có đpcm
30 tháng 6 2020
Azzz thì ra bài này đến từ Russian Mathemathic Olympipad 1992 :))) Bạn vào TKHĐ của mình để xem hình ảnh nha !
G2
0
NH
1
Áp dụng bđt Svacxo ta có :
\(VT=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=VP\)
Dấu bằng xảy ra khi và chỉ khi \(a=b=c\)