K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2019

A B C I H E F D R Q K L G

Gọi D là tiếp điểm giữa (I) và BC. K là điểm đối xứng với D qua H.

Ta dễ chứng minh \(\Delta\)CER = \(\Delta\)CDR (c.g.c). Suy ra ^CER = ^CDR = 1800 - ^RDK = 1800 - ^RKC

Do đó tứ giác CERK nội tiếp. Tương tự tứ giác BFQK nội tiếp. Từ đó (REC) cắt (QFB) tại K

Gọi G là giao điểm thứ hai của (REC) và (QFB); DI cắt lại (AEF) ở L. Khi đó G là điểm Miquel trong \(\Delta\)ABC

Suy ra G thuộc đường tròn (AEIF). Ta có ^GRI = ^GKB = ^GQB. Suy ra 4 điểm G,R,I,Q đồng viên

Ta lại có AI là đường kính của (AELIF) nên AL // HD (Cùng vuông góc ID), và AL = HD = HK   (1)

Từ đó có biến đổi góc ^IGL + ^IGQ + ^QGK = ^IAL + ^IRQ + ^QBK = ^BAC/2 + ^ACB + 900 - ^ACB/2 + ^ABC/2 = 1800

Suy ra ba điểm K,G,L thẳng hàng   (2)

Từ (1) và (2) suy ra KG chia đôi AH hay trục đẳng phương của (REC) và (QFB) chia đôi AH (đpcm).

Chiều này trường mình vừa khảo sát HSG. Các bạn thử sức với 1 số bài trích ở đề nhé.1. Tìm \(x;y\in Z\) thỏa mãn \(x^4+x^2-y^2-y+20=0\)2. Giải hệ: \(\hept{\begin{cases}\left(x+y\right)^2+x=3\\3\left(x^2+xy+y^2\right)+2y=7\end{cases}}\)3., Cho a;b;c > 0 thỏa mãn ab + bc + ca = 5.Tính GTNN của \(P=\sqrt{6\left(a^2+5\right)}+\sqrt{6\left(b^2+5\right)}+\sqrt{c^2+5}\)4. Cho pt \(x^2+\left(2-m\right)x-1-m=0\)a, Tìm m...
Đọc tiếp

Chiều này trường mình vừa khảo sát HSG. Các bạn thử sức với 1 số bài trích ở đề nhé.

1. Tìm \(x;y\in Z\) thỏa mãn \(x^4+x^2-y^2-y+20=0\)

2. Giải hệ: \(\hept{\begin{cases}\left(x+y\right)^2+x=3\\3\left(x^2+xy+y^2\right)+2y=7\end{cases}}\)

3., Cho a;b;c > 0 thỏa mãn ab + bc + ca = 5.

Tính GTNN của \(P=\sqrt{6\left(a^2+5\right)}+\sqrt{6\left(b^2+5\right)}+\sqrt{c^2+5}\)

4. Cho pt \(x^2+\left(2-m\right)x-1-m=0\)

a, Tìm m để \(\left|x_1-x_2\right|=2\sqrt{2}\)

b, Tìm m để \(T=\frac{1}{\left(x_1+1\right)^2}+\frac{1}{\left(x_2+1\right)^2}\) đạt GTNN

5. Cho hình vuông ABCD, O là tâm hình vuông. M di động trên AB. Trên AD lấy E sao cho AE = AM, trên BC lấy F sao cho BF = BM

a, C/m E,O,F thẳng hàng

b, Kẻ \(MH\perp EF\left(H\in EF\right)\) .C/m A,B,H,O cùng nằm trên 1 đường tròn

c, C/m khi M di động trên AB thì MH luôn đi qua 1 điểm cố định.

 

0
19 tháng 11 2019

What grade are you?

19 tháng 11 2019

Sai rồi còn bày đặt Tiếng Anh .Lần sau không biết thì im đi không lại bị người ta nói cho 

What grade are you in ? Okay

19 tháng 11 2019

\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)

Tương tự cộng vế theo vế thì 

\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)

Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)

bài 4 có trên mạng nha chị.tí e làm cách khác

bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.

19 tháng 11 2019

e nhầm đoạn này r

\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\) rồi cộng lại thì 

\(M\ge\frac{\sqrt{5}}{2}\left(2a+2b+2c\right)=\sqrt{5}\cdot2019\) ạ

Chắc lần này sẽ không nhầm nhưng hướng là thế ạ.

19 tháng 11 2019

áp dụng Bđt Svac-xơ ta có 1/x+4/y>=(1+2)^2/(x+y)

=> 9/(x+y)<=1

=>x+y>=9;

Dấu"=" xảy ra <=> 1/x=2/y và x+y=9

<=>2x=y và x+y=9 <=> x=3 và y=6