Hai đường thẳng LM và NP cắt nhau tại O.Biết rằng ^O3 - ^O2 = 64 o.Tìm số đo các góc: ^O4=...o
^O1=...o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x-12}{35}\)\(=\frac{4}{7}\)
\(\frac{x-12}{35}\)\(\frac{20}{35}\)\(\)
\(=>x-12=20\)
\(x=12+20=32\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(\frac{5}{6}>\frac{5}{7}\) ( nếu hai phân số có cùng tử số , mẫu phân số nào nhỏ hơn thì phân số đó lớn hơn )
Lại có :
\(\frac{5}{7}>\frac{4}{7}\)
---> \(\frac{5}{6}>\frac{4}{7}\)
xin tiick
![](https://rs.olm.vn/images/avt/0.png?1311)
L = {n| n = 2k + 1 với k ∈ N }.
a)
+) Với k = 0, ta được: n = 2. 0 + 1 = 1 ∈ L
+) Với k = 1, ta được: n = 2. 1 + 1 = 3 ∈ L
+) Với k = 2, ta được: n = 2. 2 + 1 = 5 ∈ L
+) Với k = 3, ta được: n = 2. 3 + 1 = 7 ∈ L
Do đó bốn số tự nhiên thuộc tập L là: 1; 3; 5; 7
Vậy ta thấy hai số tự nhiên không thuộc tập L là: 0; 2
b)
Nhận thấy các số: 1; 3; 5; 7; ... là các số tự nhiên lẻ.
Tương tự với mọi số tự nhiên k thì ta tìm được các số n thuộc tập hợp L đều là các số tự nhiên lẻ.
Do đó ta viết có thể viết tập hợp L bằng cách nêu dấu hiệu đặc trưng khác như sau:
L = {n ∈ ℕ | n là các số lẻ}.
a) Lần lượt thay k bởi các số 0 ; 1; 2 ;3 } vào biểu thức n = 2k + 1 , ta sẽ tìm được bốn số tự nhiên thuộc tập L là : 0 ; 2 .
b) L = { x l x là số tự nhiên lẻ}