giải bài 109 chứ không giải bài dưới
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Em ghi đề cho chính xác
2) \(\left(-882\right).124,35-\left(-882\right).24,35\)
\(=-882.\left(124,35-24,35\right)\)
\(=-882.100\)
\(=-88200\)
3) \(3,4.\left(-23,68\right)-3,4.45,12+\left(-31,2\right).3,4\)
\(=3,4.\left(-23,68-45,12+31,2\right)\)
\(=3,4.\left(-100\right)\)
\(=-340\)
4) \(5,42-\left(-2,49-4,58\right)+\left(10-2,49\right)\)
\(=5,42+2,49+4,58+10-2,49\)
\(=\left(5,42+4,58\right)+\left(2,49-2,49\right)+10\)
\(=10+0+10\)
\(=20\)
Mặt có số chấm lẻ là: 1; 3; 5
Số lần xuất hiện mặt có số chấm lẻ:
\(5+3+2=10\) (lần)
Xác suất thực nghiệm xuất hiện mặt có số chấm lẻ:
\(P=\dfrac{10}{22}=\dfrac{5}{11}\)
Chọn A
a.
\(6,1.\left(-5,3\right)+6,1.\left(-4,7\right)=6,1.\left(-5,3-4,7\right)=6,1.\left(-10\right)=-61\)
b.
\(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)=\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{2}{4}\right)=\dfrac{-5}{2}:\dfrac{1}{4}=-10\)
\(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+...+99}\)
\(=\dfrac{1}{2\cdot\dfrac{3}{2}}+\dfrac{1}{3\cdot\dfrac{4}{2}}+...+\dfrac{1}{99\cdot\dfrac{100}{2}}\)
\(=\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{99\cdot100}\)
\(=2\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{100}\right)=1-\dfrac{1}{50}=\dfrac{49}{50}\)
1: \(\left(2,07-3,005\right)-\left(12,005-4,23\right)\)
\(=2,07-3,005-12,005+4,23\)
\(=6,3-15,01\)
=-8,71
2: \(\left(-0,4\right)\cdot\left(-0,5\right)\cdot\left(-0,8\right)\)
\(=-0,4\cdot0,5\cdot0,8\)
\(=-0,2\cdot0,8=-0,16\)
3: \(\left(-0,76\right)+6,72+0,76+\left(-2,72\right)\)
\(=\left(-0,76+0,76\right)+\left(6,72-2,72\right)\)
=0+4
=4
Gọi d=ƯCLN(2n+3;n+2)
=>\(\left\{{}\begin{matrix}2n+3⋮d\\n+2⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2n+3⋮d\\2n+4⋮d\end{matrix}\right.\)
=>\(2n+3-2n-4⋮d\)
=>\(-1⋮d\)
=>d=1
=>ƯCLN(2n+3;n+2)=1
=>\(\dfrac{2n+3}{n+2}\) là phân số tối giản
a.
Số cây Lan trồng được là:
\(480\times\dfrac{1}{4}=120\) (cây)
Số cây Hồng trồng được là:
\(480\times\dfrac{3}{10}=144\) (cây)
b.
Số cây Điệp trồng được là:
\(\left(120+144\right)\times\dfrac{1}{2}=132\) (cây)
c.
Số cây Mạnh trồng được là:
\(480-\left(120+144+132\right)=84\) (cây)
Tỉ số phần trăm số cây Mạnh trồng so với số cây của 4 bạn là:
\(\left(\dfrac{84.100}{480}\right)\%=17,5\%\)
-5/9 x 7/13 + 5/9 x -6/13 + 2 5/9
= -5/9 x 7/13 + 5/9 x -6/13 + 23/9
= 5/9 x -7/13 + 5/9 x -6/13 + 23/9
= 5/9 x (-7/13 - 6/13) + 23/9
= 5/9 x -1 + 23/9
= -5/9 + 23/9
= 2
\(AE+EQ+QC=AC\Rightarrow\dfrac{1}{4}EQ+EQ+\dfrac{1}{2}EQ=AC\)
\(\Rightarrow\dfrac{7}{4}EQ=AC\Rightarrow EQ=\dfrac{4}{7}AC\)
Hai tam giác ACD và DEQ chung đỉnh D và đáy cùng nằm trên đường thẳng AC
\(\Rightarrow S_{DEQ}=\dfrac{4}{7}S_{ACD}\)
Hai tam giác ABC và BEQ có chung đỉnh B và đáy cùng nằm trên đường thẳng AC
\(\Rightarrow S_{BEQ}=\dfrac{4}{7}S_{ABC}\)
\(\Rightarrow S_{DEQ}+S_{BEQ}=\dfrac{4}{7}S_{ACD}+\dfrac{4}{7}S_{ABC}\)
\(\Rightarrow S_{EDQB}=\dfrac{4}{7}S_{ABCD}=\dfrac{4}{7}.812=464\left(cm^2\right)\)