cho a b c là các số dương thỏa mãn a^2+2b^2<=3c^2. cm 1/a+2/b>=3/c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge0;x+y-4\ge0\)
\(PT_{\left(1\right)}\Leftrightarrow\left(\sqrt{x^2+3}-2\right)+\left(\sqrt{x}-1\right)+\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{x-1}{\sqrt{x}+1}+\frac{x-1}{\sqrt{x+3}+2}=0\)
\(\Leftrightarrow\left(x-1\right)\left[\frac{\left(x+1\right)}{\sqrt{x^2+3}+2}+\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x+3}+2}\right]=0\)
Cái ngoặc to vô nghiệm. Vậy x = 1.
Thay xuống PT (2) \(\Leftrightarrow3+\sqrt{y-3}=5\left(Đ\text{K:}y\ge3\right)\Leftrightarrow\sqrt{y-3}=2\Leftrightarrow y=7\)
Vậy x = 1; y = 7
P/s: Em ko chắc.
Với dự đoán P đạt Min tại \(a=b=c=\frac{5}{3}\Rightarrow P=\frac{9}{20}\). Nên ta chứng minh \(P\ge\frac{9}{20}\).Thật vậy:\(P=\Sigma\frac{a}{ab+5c}=\Sigma\frac{a}{\left(a+c\right)\left(b+c\right)}=\frac{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{\left(a+b+c\right)^2-\frac{\left(a+b+c\right)^2}{3}}{\left[\frac{\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}{3}\right]^3}=\frac{9}{20}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{5}{3}\)
Vậy..
BĐT \(\Leftrightarrow\left[\left(a+b\right)+\left(a+c\right)\right]\left[\left(b+c\right)+\left(a+b\right)\right]\left[\left(c+a\right)+\left(b+c\right)\right]\ge8\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Đây là BĐT quy thuộc! \(\left(a+b\right)+\left(a+c\right)\ge2\sqrt{\left(a+b\right)\left(a+c\right)}\) rồi tương tự các kiểu.
Nhân theo vế thu được đpcm
Buffalo way!
\(\Leftrightarrow\frac{7}{5}\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)\le\frac{a^2+b^2+c^2}{abc}\) (đồng bậc 2 vế)
\(\Leftrightarrow7\left(bc+a\left(c-b\right)\right)\le5\left(a^2+b^2+c^2\right)\)
Ta có:\(VP-VT=5a^2+\left(b-c\right)a+5b^2+5c^2-7bc\)
\(=\frac{\left(10a+b-c\right)^2+99\left(b-\frac{69c}{99}\right)^2+\frac{560}{11}c^2}{20}\ge0\)
qed./.
\(f\left(2\right)=2.2+3=7\)
\(f\left(-3\right)=2.-3+3=-3\)
\(f\left(6\right)=2.6+3=15\)
study well
thay x=2 vào hàm số ta có
f(2)=2.2+3=4+3=7
vậy f(2)=7
thay f(-3) vào hàm số ta có
f(-3)=2.(-3)+3=-6+3=-3
vậy f(-3)=-3
thay x=6 vào hàm số ta có
f(6)=2.6+3=12+3=15
vậy f(6)=15
đúng tk cho mik