K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

mình vừa kiểm tra phần này lun nè

22 tháng 11 2019

Giúp mình với 

22 tháng 11 2019

Đề sai! Cho \(a=b=c=\frac{1}{3}\rightarrow VT=\frac{1}{4}< \frac{3}{2}\).

Sửa đề \(VT\ge\frac{1}{4}\).Ta có: 

Áp dụng BĐT Cauchy-Schwarz dạng Engel:  \(VT\ge\frac{\left(x+y+z\right)^2}{3+x+y+z}=\frac{1}{4}\)

22 tháng 11 2019

Lấy 3 lần pt dưới cộng pt trên ta được :
\(4x^2+4y^2+z^2+2yz-4xz-4xy=0\)

\(\Leftrightarrow\left(2x-y-z\right)^2+3y^2=0\)

\(\Leftrightarrow\hept{\begin{cases}y=0\\2x-y-z=0\end{cases}\Rightarrow\hept{\begin{cases}y=0\\z=2x\end{cases}}}\)

\(\Rightarrow x^2+4x^2-2x^2=3\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1;z=2\\x=-1;z=-2\end{cases}}\)