Cho x,y,z dương và x+y+z=1. Tìm Min của
S=x^2/y+z +y^2/z+x + z^2/x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
\(8x^3+4x^2-9x+30=8x^3+16x^2-12x^2-24x+15x+30\)
\(=8x^2\left(x+2\right)-12x\left(x+2\right)+15\left(x+2\right)\)
\(=\left(x+2\right)\left(8x^2-12x+15\right)\)
\(8x^3+4x^2-9x+30\)
\(=8x^3+16x^2-12x^2-24x+15x+30\)
\(=8x^2\cdot\left(x+2\right)-12x\cdot\left(x+2\right)+15x\cdot\left(x+2\right)\)
\(=\left(x+2\right)\cdot\left(8x^2-12x+15\right)\)
a, 472014 - 472013 = 472013 . (47 - 1) = 472013 . 46 = 472013 . 2 . 23 ⋮ 23
Vậy 472014 - 472013 ⋮ 23
b, 542014 + 542015 = 542014 . (1 + 54) = 542014 . 55 = 542014 . 5 .11 ⋮ 11
Vậy 542014 + 542015 ⋮ 11
c, 273 + 95 = (33)3 + (32)5 = 39 + 310 = 39 . (1 + 3) = 39 . 4 ⋮ 4
Vậy 273 + 95 ⋮ 4
d, a(2a - 3) - 2a(a + 1) = 2a2 - 3a - 2a2 - 2a = -5a = (-1) . 5 . a ⋮ 5
Vậy a(2a - 3) - 2a(a + 1) ⋮ 5 với mọi a nguyên
Bài làm :
a) 472014 - 472013 = 472013 . (47 - 1) = 472013 . 46 = 472013 . 2 . 23 ⋮ 23
=> Điều phải chứng minh
b) 542014 + 542015 = 542014 . (1 + 54) = 542014 . 55 = 542014 . 5 .11 ⋮ 11
=> Điều phải chứng minh
c) 273 + 95 = (33)3 + (32)5 = 39 + 310 = 39 . (1 + 3) = 39 . 4 ⋮ 4
=> Điều phải chứng minh
d) a(2a - 3) - 2a(a + 1) = 2a2 - 3a - 2a2 - 2a = -5a = (-1) . 5 . a ⋮ 5
=> Điều phải chứng minh
a, xét tg DAB và tg DKC có : ^DKC = ^DAB = 90
^KDC = ^ADB (Đối đỉnh)
=> tg DAB đồng dạng với tg DKC (g-g) (1)
b, (1) => DA/DB = DK/DC (đn)
xét tg ADK và tg BDC có : ^ADK = ^BDC (đối đỉnh)
=> tg ADK đồng dạng với tg BDC (c-g-c)
=> ^KAD = ^DBC (đn)
c, chưa nghĩ ra
Áp dụng bđt svacxo :
\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\)
Dấu = xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
Vậy \(Min_S=\frac{1}{2}\)khi \(x=y=z=\frac{1}{3}\)
Bài làm:
Áp dụng bất đẳng thức Svac-xơ ta có:
\(S=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1^2}{2.1}=\frac{1}{2}\)
Dấu "=" xảy ra khi: \(\frac{x}{y+z}=\frac{y}{x+z}=\frac{z}{y+x}\Rightarrow x=y=z=1\)
Vậy Min(S)=1 khi \(x=y=z=1\)
Học tốt!!!!