K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2021

a, \(3x+2\left(x-5\right)=6-\left(5x-1\right)\)

\(\Leftrightarrow3x+2x-10=6-5x+1\)

\(\Leftrightarrow-15\ne0\)Vậy phương trình vô nghiệm 

b, \(x^3-3x^2-x+3=0\)

\(\Leftrightarrow x\left(x^2-1\right)-3\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x+1\right)=0\Leftrightarrow x=3;\pm1\)

Vậy tập nghiệm của phương trình là S = { 1 ; -1 ; 3 }

27 tháng 1 2021

c, \(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}ĐK:x\ne\pm3\)

\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow x+3+x^2-3x-2=0\)

\(\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)thỏa mãn 

Vậy ... 

28 tháng 6 2020

\(\frac{x-2014}{14}-\frac{x-2015}{15}=0\)

<=> \(\frac{15\left(x-2014\right)}{14\cdot15}-\frac{14\left(x-2015\right)}{14\cdot15}=0\)

<=> \(15x-30210-14x+28210=0\)

<=> \(x-2000=0\)

<=> \(x=2000\)

Vậy nghiệm của phương trình là S = { 2000 }

x-(2014/14-2015/15)=0

x-200/21=0

x=0+200/21

x=200/21

27 tháng 6 2020

\(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\)

\(\Leftrightarrow a^4+b^4+a^3b+ab^3\le2\left(a^4+b^4\right)\)

\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]\ge0\) * đúng *

b

Hiển hiên

28 tháng 6 2020

\(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\)

\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Dấu "=" xảy ra <=> a=b

28 tháng 6 2020

Bổ sung thêm dữ kiện: Không có trận đấu tennis hòa

Một người đều chơi 9 trận với 9 người khác và không có trận hòa

Do đó \(x_1+y_1=x_2+y_2=....=x_{10}+y_{10}=9\)

Mà tổng số trận thắng bằng tổng số trận thua, do đó: \(x_1+x_2+...+x_{10}=y_1+y_2+y_3+...+y_{10}\)

Ta có \(\left(x_1^2+x_2^2+...+x_{10}^2\right)-\left(y_1^2+y_2^2+....+y_{10}^2\right)\)

\(=\left(x_1^2-y_1^2\right)+\left(x_2^2-y_2^2\right)+....+\left(x_{10}^2-y_{10}^2\right)=9\left(x_1-y_1\right)+9\left(x_1-y_2\right)+....+9\left(x_{10}-y_{10}\right)\)

\(=9\left(x_1-y_1+x_2-y_2+...+x_{10}-y_{10}\right)=9\left[\left(x_1+x_2+...+x_{10}\right)-\left(y_1+y_2+..+y_{10}\right)\right]=0\)

Vậy \(x_1^2+x_2^2+...+x_{10}^2=y_1^2+y_2^2+....+y_{10}^2\)

27 tháng 6 2020

\(\frac{x-2}{x+1}>1\left(đkxđ:x\ne-1\right)\)

<=> \(\frac{x-2}{x+1}-1>0\)

<=> \(\frac{x-2}{x+1}-\frac{x-1}{x+1}>0\)

<=> \(\frac{-3}{x+1}>0\)

Để \(\frac{-3}{x+1}>0\)=> \(x+1< 0\)<=> \(x< -1\left(tmđk\right)\)

Vậy nghiệm của bất phương trình là x < -1

\(\frac{3x-3}{x-1}\le2\left(đkxđ:x\ne1\right)\)

Rút gọn vế trái ta được : \(3\le2\)( vô lí )

Vậy bất phương trình vô nghiệm

27 tháng 6 2020

Ta dễ dàng nhận thấy : 

\(\left(\frac{x+1}{y}\right)^2\ge0\)

\(\left(\frac{y+1}{x}\right)^2\ge0\)

Cộng theo vế ta được : 

\(\left(\frac{x+1}{y}\right)^2+\left(\frac{y+1}{x}\right)^2\ge0\)

Dấu = xảy ra khi và chỉ khi \(x=y=-1\)

Vậy \(Min_S=0\)khi \(x=y=-1\)

27 tháng 6 2020

dcv_new : sai rồi nhé 
\(S=x^2+\frac{1}{y^2}+\frac{2x}{y}+y^2+\frac{1}{x^2}+\frac{2y}{x}\)

\(\ge4+\frac{4}{x^2+y^2}+2\left(\frac{x}{y}+\frac{y}{x}\right)\)

\(=5+4=9\)

Đẳng thức xảy ra tại x=y=\(\sqrt{2}\)

27 tháng 6 2020

Áp dụng bđt cauchy schwarz dạng engel ta có :

\(VP=\frac{x^2}{1}+\frac{y^2}{1}+\frac{z^2}{1}\le\frac{\left(x+y+z\right)^2}{3}=3\)

Dấu = xảy ra khi và chỉ khi \(x=y=z=1\)

Vậy \(Max_S=3\)khi \(x=y=z=1\)

28 tháng 6 2020

Ta có \(-1\le x,y,z\le2\Leftrightarrow\left(x+1\right)\left(x-2\right)\le0\Leftrightarrow x^2-x-2\le0\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}y^2-y-2\le0\left(2\right)\\z^2-z-2\le0\left(3\right)\end{cases}}\)

Cộng từng vế (1)(2)(3) và do x+y+z=0 nên P\(\le6\left(4\right)\)

Từ hệ \(\hept{\begin{cases}\left(x+1\right)\left(x-2\right)=0\\\left(y+1\right)\left(y-2\right)=0\\\left(z+1\right)\left(z-2\right)=0\end{cases}}\)và x+y+z=2

=> trong 3 số x,y,z có một trong 2 số bằng 2 và hai số bằng -1

Vì thế chẳng hạn khi x=2; y=z=-1 (lúc đó x+y+z=0) ta có P=6

Vậy maxP=6