Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(3n^3-1011⋮1008\)
\(\Leftrightarrow\left(3n^3-3\right)-1008⋮1008\)
\(\Leftrightarrow3\left(n^3-1\right)⋮1008\)
\(\Leftrightarrow n^3-1⋮336\)\(⋮48\)
\(\Rightarrow\left(n-1\right)\left(n^2+n+1\right)⋮48\).
Do \(n^2+n+1\) là số lẻ với mọi \(n\inℤ\) nên suy ra được \(n-1⋮48\), đpcm.
Giả sử n là số chẵn ta có: 3n3 là số chẵn ⇒ 3n3 - 1011 là số lẻ
⇒ 3n3 - 1011 không chia hết cho 1008 vậy điều giả sử là sai
⇒ n là số lẻ. Mặt khác ta cũng có:
3n3 - 1011 ⋮ 1008 ⇔ 3n3 - 3 -1008 ⋮ 1008 ⇔ 3n3 - 3 ⋮ 1008
⇔3(n3-1)⋮ 1008⇔ n3 - 1⋮ 336 ⇔ n3 - 1⋮ 48 ⇔(n-1)(n2+n+1)⋮48(1)
vì n là số lẻ (chứng minh trên) nên ta có: n2 + n + 1 là số lẻ
⇔ n2 + n + 1 không chia hết cho 48 (2)
Kết hợp(1) và (2) ta có: n - 1 ⋮ 48 (đpcm)
Với \(p=2\) thì \(2p^4-p^2+16=44\) không là số chính phương.
Với \(p=3\) thì \(2p^4-p^2+16=169\) là số chính phương.
Với \(p\ge5\), suy ra \(p⋮̸3\). Dễ dàng kiểm chứng \(p^2\equiv1\left(mod3\right)\) còn \(2p^4\equiv2\left(mod3\right)\). Lại có \(16\equiv1\left(mod3\right)\) nên \(2p^4-p^2+16\equiv2\left(mod3\right)\), do đó \(2p^4-p^2+16\) không thể là số chính phương.
Như vậy, số nguyên tố \(p\) duy nhất thỏa mãn ycbt là \(p=3\)
Mình quên mất là không cần xét \(p=2\) đâu vì đề bài cho \(p\) nguyên tố lẻ.
a/
D và E cùng nhìn MC dưới 1 góc vuông -> CDME là tứ giác nội tiếp
b/
CM tương tự ta cũng có tứ giác BDMF là tứ giác nội tiếp
\(\Rightarrow\widehat{MBF}=\widehat{MDF}\) (góc nt cùng chắn cung MF) (1)
Xét tứ giác nt CDME có
\(\widehat{MCE}=\widehat{MDE}\) (góc nt cùng chắn cung MF) (2)
Từ (1) và (2) \(\Rightarrow\widehat{MBF}+\widehat{MCE}=\widehat{MDF}+\widehat{MDE}=\widehat{EDF}\) (3)
Xét \(\Delta ABC\) có
AB=AC (Hai tiếp tuyến cùng xp từ 1 điểm)
=> \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{xAy}}{2}=\dfrac{180^o-60^o}{2}=60^o\)
Ta có
\(sđ\widehat{ABC}=\dfrac{1}{2}sđ\) cung BC => sđ cung BC = 2.sđ \(\widehat{ABC}=2.60^o=120^o\)
=> sđ cung BM + sđ cung CM = sđ cung BC \(=120^o\)
Ta có
\(sđ\widehat{MBF}=\dfrac{1}{2}sđ\) cung BM (góc giữa tiếp tuyến và dây cung)
\(sđ\widehat{MCE}=\dfrac{1}{2}sđ\) cung CM (góc giữa tiếp tuyến và dây cung)
\(\Rightarrow sđ\widehat{MBF}+sđ\widehat{MCE}=sđ\widehat{EDF}=\dfrac{sđcungBM+sđcungCM}{2}=\dfrac{sđcungBC}{2}=\dfrac{120^0}{2}=60^o\)
c/
Xét tg vuông MBF và tg vuông MCD có
\(sđ\widehat{MBF}=\dfrac{1}{2}sđcungBM\) (góc giữa tiếp tuyến và dây cung)
\(sđ\widehat{MCD}=\dfrac{1}{2}sđcungBM\) (góc nt)
\(\Rightarrow\widehat{MBF}=\widehat{MCD}\) => tg MBF đồng dạng với tg MCD
\(\Rightarrow\dfrac{MF}{MD}=\dfrac{MB}{MC}\)
CM tương tự ta cũng có tg vuông MCE đồng dạng với tg vuông MBD
\(\Rightarrow\dfrac{ME}{MD}=\dfrac{MC}{MB}\Rightarrow\dfrac{MD}{ME}=\dfrac{MB}{MC}\)
\(\Rightarrow\dfrac{MF}{MD}=\dfrac{MD}{ME}\Rightarrow MD^2=ME.MF\left(đpcm\right)\)
Giả sử \(y\) là số lẻ
Đặt \(\left\{{}\begin{matrix}x^2-y=m^2\\x^2+y=n^2\end{matrix}\right.\left(m,n\inℕ;m< n\right)\)
\(\Rightarrow2y=n^2-m^2\) \(\Rightarrow n^2-m^2\) chia hết cho 2 nhưng không chia hết cho 4.
Thế nhưng, ta thấy \(n^2\) và \(m^2\) khi chia cho 4 chỉ có thể có số dư là 0 hoặc 1, vậy nên \(n^2-m^2\) khi chia cho 4 sẽ chỉ có số dư là \(0,1,-1\), nghĩa là nếu \(n^2-m^2\) mà chia hết cho 2 thì buộc hiệu này phải chia hết cho 4, mâu thuẫn. Vậy điều giả sử là sai \(\Rightarrow\) đpcm.
Ta nhận thấy tổng các hệ số trong phương trình đã cho là
\(1-2\left(m-1\right)+2m-3=0\) nên pt này luôn có 1 nghiệm bằng 1, còn nghiệm kia là \(2m-3\). Do vai trò của \(x_1,x_2\) trong \(x^2+2x_1x_2-x_2=1\) là không như nhau nên ta phải chia làm 2TH:
TH1: \(x_1=1;x_2=2m-3\). Khi đó ta có
\(1+2\left(2m-3\right)-\left(2m-3\right)=1\) \(\Leftrightarrow2m-3=0\) \(\Leftrightarrow m=\dfrac{3}{2}\)
TH2: \(x_1=2m-3;x2=1\). Khi đó
\(\left(2m-3\right)^2+2\left(2m-3\right)-1=1\) \(\Leftrightarrow4m^2-8m+1=0\) \(\Leftrightarrow m=\dfrac{2\pm\sqrt{3}}{2}\)
Vậy để pt đã cho có 2 nghiệm \(x_1,x_2\) thỏa ycbt thì \(\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=\dfrac{2\pm\sqrt{3}}{2}\end{matrix}\right.\)
Thể tích của cốc nước hình trụ là
\(V_{trụ}=\pi r^2h=\pi.\dfrac{d^2}{4}.h=\pi.\dfrac{8^2}{4}.9=144\pi\left(cm^3\right)\)
Thể tích của viên bi hình cầu là
\(V_{cầu}=\dfrac{4}{3}\pi R^3=\dfrac{4}{3}\pi.3^3=12\pi\left(cm^3\right)\)
Vì khi thả viên bi vào cốc nước đang chứa đầy nước thì lượng nước trào ra ngoài bằng đúng thể tích của viên bi nên lượng nước còn lại trong cốc là \(144\pi-12\pi=132\pi\left(cm^3\right)\approx414,48\left(cm^3\right)=414,48\left(ml\right)\)
Thể tích của cốc nước hình trụ là
Thể tích của viên bi hình cầu là
Vì khi thả viên bi vào cốc nước đang chứa đầy nước thì lượng nước trào ra ngoài bằng đúng thể tích của viên bi nên lượng nước còn lại trong cốc là
2x-y=-3
=>y=3+2x thay vào x + 3y =4 ta được:
x + 3(3+2x) = 4
7x = -5 => x=-5/7 => y= 11/7
Em nên chèn bằng công thức nhé, chứ em viết thế này cô không hiểu đúng đề bài em cần được để trợ giúp em đâu