K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2021

Mình nghĩ đề này của bạn nên thêm điều kiện khi cộng vào mỗi chữ số của nó 1 đơn vị ta vẫn luôn được 1 số có 4 chữ số thì bài toán chắc sẽ dễ dàng giải quyết hơn đấy nhỉ!

Gọi số cần tìm là \(x^2=\overline{abcd}\) \(\left(a,b,c,d< 9\&\inℕ\right)\)

Theo đề bài khi cộng mỗi chữ số của nó thêm 1 đơn vị thì ta vẫn được 1 số chính phương nên đặt:

\(y^2=\overline{\left(a+1\right)\left(b+1\right)\left(c+1\right)\left(d+1\right)}\)

\(\Rightarrow\overline{abcd}+1111=y^2\)

\(\Leftrightarrow x^2+1111=y^2\Leftrightarrow y^2-x^2=1111\)

\(\Leftrightarrow\left(y-x\right)\left(y+x\right)=1111=11\cdot101=1\cdot1111\) 

Dễ nhận thấy \(y+x>y-x>0\) nên ta xét các TH sau:

Nếu \(\hept{\begin{cases}y-x=11\\y+x=101\end{cases}}\Rightarrow\hept{\begin{cases}x=45\\y=56\end{cases}\left(tm\right)}\Rightarrow\overline{abcd}=2025\)

Nếu \(\hept{\begin{cases}y-x=1\\y+x=1111\end{cases}}\Rightarrow\hept{\begin{cases}x=555\\y=556\end{cases}}\Rightarrow ktm\)

Vậy số cần tìm là 2025 

23 tháng 1 2021

Gọi số cần tìm là a\(^2\), số mới được tạo thành b\(^2\)( a,b là số tự nhiên ) .

Theo đề bài , ta có :

\(b^2-a^2=1111\)( vì thêm mỗi chữ số 1 đơn vị )

\(\Leftrightarrow\left(b+a\right)\left(b-a\right)=1111=1111.1=101.11\)

Vì b > a nên b + a có thể bằng 1111 hoặc 101 , còn b - a chỉ có thể bằng 1 hoặc 11

Giải ra , ta được \(a=555,b=556\)( loại vì số cần tìm là số có 4 chữ số ) và \(a=45,b=56\)( thỏa mãn )

Vậy số cần tìm là \(45^2=2025\)

* Nguồn : https://cunghoctot.vn/forum/topic/nhien-la-so-chinh-phuong-co-4-chu-so

23 tháng 1 2021

a) Áp dụng định lý Pi-ta-go vào \(\Delta\)vuông ABC có :

\(AB^2+AC^2=BC^2\Leftrightarrow BC=20\left(cm\right)\)

Do AD là phân giác \(\widehat{A}\)theo tính chất đường phân giác , ta có :

\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\)

\(\Rightarrow\frac{BD}{BD+CD}=\frac{3}{3+4}\Rightarrow\frac{BD}{BC}=\frac{3}{7}\)

\(\Rightarrow BD=\frac{3}{7}BC=\frac{60}{7}\)

\(\Rightarrow DC=BC-BD=\frac{80}{7}\)

b) AH là đường cao \(\Delta\)vuông ABC nên :

\(S_{\Delta ABC}=\frac{AH.BC}{2}=\frac{AB.AC}{2}\)

\(\Rightarrow AH=\frac{AB.C}{BC}=\frac{48}{5}\left(cm\right)\)

Ta có :

\(BH^2=AB^2-AH^2\Rightarrow BH=\frac{36}{5}\left(cm\right)\)

\(\Rightarrow DH=BD=BH=\frac{48}{35}\left(cm\right)\)

\(AD^2=DH^2+AH^2\Rightarrow AD=\frac{48\sqrt{2}}{7}\left(cm\right)\)

22 tháng 1 2021

1 giờ vòi 1 chảy được : 1 : 4 = 1/4 bể

1 giờ vòi 2 chảy được : 1 : 5 = 1/5 bể

1 giờ vòi 3 chảy được  1:6 = 1/6 bể

=> 1 giờ 3 vòi chảy được : 1/4 + 1/5 + 1/6 = 37/60 bể

=> Thời gian để 3 vòi chảy đầy bể là 1 : 37/60 = 60/37 giờ 

AA',BB',CC' là gì vậy bạn ?

Ta có: \(4x-9=-x+16\)

\(\Rightarrow4x+x=9+16\)

\(\Rightarrow5x=25\)

\(\Rightarrow x=5\)

Vậy \(x=5\)

19 tháng 1 2021

4x - 9 = -x + 16 

<=> 4x + x = 16 + 9

<=> 5x = 25

<=> x = 5

Vậy phương trình có một nghiệm x = 5

19 tháng 1 2021

\(x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-4=0\\x-5=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=4\\x=5\end{cases}}\)

Vậy tập nghiện của PT là S =  { 4 ; 5 }

19 tháng 1 2021

x2 - 9x + 20 = 0

<=> x2 - 4x - 5x + 20 = 0

<=> x( x - 4 ) - 5( x - 4 ) = 0

<=> ( x - 4 )( x - 5 ) = 0

<=> x - 4 = 0 hoặc x - 5 = 0

<=> x = 4 hoặc x = 5

Vậy phương trình có tập nghiệm S = { 4 ; 5 }