K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

Chỉ cần chú ý:

\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2c\)

Từ đó thiết lập 2 BĐT còn lại tương tự rồi cộng theo vế thu được đpcm.

28 tháng 11 2019

Áp dụng BĐT Bunhiacopxky :

\(\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\left(abc+abc+abc\right)\ge\left(ab+bc+ac\right)^2\)

\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge\frac{\left(ab+bc+ac\right)^2}{3abc}\left(1\right)\)

Áp dụng BĐT Cauchy 

\(\hept{\begin{cases}a^2b^2+b^2c^2\ge2ab^2c\\a^2b^2+c^2a^2\ge2a^2bc\Rightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\\b^2c^2+c^2a^2\ge2abc^2\end{cases}}\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2\ge3\left(a+b+c\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\left(đpcm\right)\)

Dấu " = " xảy ra khi \(a=b=c\)

Chúc bạn học tốt !!!

28 tháng 11 2019

Đặt \(\left(\frac{a}{b^2},\frac{b}{c^2},\frac{c}{a^2}\right)=\left(x,y,z\right)\)

\(\Rightarrow xyz=\frac{abc}{a^2b^2c^2}=\frac{1}{abc}=1\)

Theo bài ra ta có : \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)

\(\Leftrightarrow x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Leftrightarrow x+y+z=xy+yz+xz\)

\(\Leftrightarrow\left(xy-x-y+1\right)-1+z\left(x+y-1\right)=0\)

\(\Leftrightarrow\left(xy-x-y+1\right)+z\left(x+y-1-xy\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)-z\left(x-1\right)\left(y-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(1-z\right)=0\)

\(\Leftrightarrow\frac{a-b^2}{b^2}.\frac{b-c^2}{c^2}.\frac{a^2-c}{a^2}=0\)

\(\Leftrightarrow\left(a-b^2\right)\left(b-c^2\right)\left(c-a^2\right)=0\)

Ta có đpcm

30 tháng 11 2019

\(\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xy}=\frac{5}{12}\\\frac{y+z}{yz}=\frac{5}{18}\\\frac{z+x}{zx}=\frac{13}{36}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{y}+\frac{1}{x}=\frac{5}{12}\left(1\right)\\\frac{1}{z}+\frac{1}{y}=\frac{5}{18}\left(2\right)\\\frac{1}{z}+\frac{1}{x}=\frac{13}{36}\left(3\right)\end{cases}}\)

Cộng vế với vế,ta được: \(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{19}{18}\)\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{19}{36}\)(4)

Từ (1) và (4) suy ra : \(\frac{1}{z}=\frac{1}{9}\Rightarrow z=9\)

từ (2) và (4) suy ra : \(\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

từ (3) và (4) suy ra: \(\frac{1}{y}=\frac{1}{6}\Rightarrow y=6\)

28 tháng 11 2019

Đặt \(A=\frac{2m}{m^2+5}\Rightarrow A>0\)

Mặt khác \(A-1=\frac{2m}{m^2+5}-1=\frac{-\left(m^2-2m+1\right)-4}{m^2+5}=\frac{-\left(m-1\right)^2-4}{m^2+5}< 0\forall m\)

\(\Rightarrow A< 1\Rightarrow0< A< 1\)

A nawmgf giữa 2 số nguyên liên tiếp nên A không phải số nguyên 

28 tháng 11 2019

Đặt : \(A=\sqrt{8+2\sqrt{10+2\sqrt{5}}}-\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)

=> \(A^2=16-2\sqrt{8+2\sqrt{10+2\sqrt{5}}}.\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)

\(=16-2\sqrt{8^2-4\left(10+2\sqrt{5}\right)}\)

\(=16-2\sqrt{24-8\sqrt{5}}\)

\(=16-2\sqrt{20-2.2\sqrt{5}.2+4}\)

\(=16-2\sqrt{\left(2\sqrt{5}-2\right)^2}\)

\(=16-2\left(2\sqrt{5}-2\right)=20-4\sqrt{5}\)

=> \(A=\sqrt{20-4\sqrt{5}}\)

1 tháng 7 2021

A B C D E F G

Gọi AE cắt CD tại G. Dễ thấy \(\frac{AE}{AG}=\frac{BE}{BC}=\frac{3}{4},FG=DC\), do đó:

\(\frac{1}{2}AE.AF.\sin\widehat{EAF}=S_{AEF}=\frac{3}{4}S_{AFG}=\frac{3}{4}S_{ADC}=\frac{3}{8}AB.BC\)

Suy ra \(\sin\widehat{EAF}=\frac{3}{4}.\frac{AB.BC}{AE.AF}=\frac{3}{4}.\frac{xy}{\sqrt{x^2+\frac{9}{16}y^2}.\sqrt{y^2+\frac{1}{9}x^2}}\) \(\left(x=AB,y=BC\right)\)

\(\le\frac{3}{4}.\frac{xy}{xy+\frac{1}{4}xy}=\frac{3}{5}\) (BĐT Bunhiacopxki)

Vì \(0^0< \widehat{EAF}< 90^0\) nên \(max\widehat{EAF}=arc\sin\left(\frac{3}{5}\right)\approx36,87^0\)

Dấu "=" xảy ra khi và chỉ khi \(\frac{x}{y}=\frac{\frac{3}{4}y}{\frac{1}{3}x}\Leftrightarrow\frac{x}{y}=\frac{3}{2}\)hay \(\frac{AB}{BC}=\frac{3}{2}\Rightarrow\frac{AB}{AC}=\frac{3\sqrt{13}}{13}\)

28 tháng 11 2019

mk se kb voi ban nhung dung dang linh tinh nhu the se bi tru diem do 

Đâu dại gì mà kb đâu.

28 tháng 11 2019

Um hok tốt

28 tháng 11 2019

hok tốt mk kb

28 tháng 11 2019

chỗ \(\sqrt{n}-\sqrt{n+1}\)phải là \(\sqrt{n}+\sqrt{n+1}\)

28 tháng 11 2019

a, Ta có

\(\frac{2}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{2n+1}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}\)

mà \(\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n}}=\frac{2\cdot\left(\sqrt{n+1}-\sqrt{n}\right)}{2\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n+1}}{\sqrt{n}\cdot\sqrt{n+1}}-\frac{\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

b, áp dụng bđt ta có

\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{4023\cdot\left(\sqrt{2011}+\sqrt{2012}\right)}< \frac{2011}{2013}\)

\(=\frac{1}{\left(2\cdot1+1\right)\left(1+\sqrt{2}\right)}+\frac{1}{\left(2\cdot2+1\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2\cdot2011+1\right)\left(\sqrt{2011}-\sqrt{2012}\right)}\)

\(< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2011}}-\frac{1}{\sqrt{2012}}\)..

\(=1-\frac{1}{\sqrt{2012}}=\frac{\sqrt{2012}-1}{\sqrt{2012}}=\frac{2011}{\sqrt{2012}\cdot\left(\sqrt{2012}+1\right)}\)

\(=\frac{2011}{2012+\sqrt{2012}}< \frac{2011}{2013}\)