\(\left(4+\sqrt{15}\right)\left(\sqrt{10}+\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Bunhiacopxky :
\(\left(9a^3+3b^2+c\right)\left(\frac{1}{9a}+\frac{1}{3}+c\right)\ge\left(a+b+c\right)^2=1\)
\(\Rightarrow9a^3+3b^2+c\ge\frac{1}{\frac{1}{9a}+\frac{1}{3}+c}\)
\(\Rightarrow\frac{a}{9a^3+3b^2+c}\le a\left(\frac{1}{9a}+\frac{1}{3}+c\right)\)
Thực hiện tương tự với các phân thức khác và cộng theo vế :
\(P\le\frac{1}{9}+\frac{1}{9}+\frac{1}{9}+\frac{a+b+c}{3}+\left(ab+bc+ac\right)\)
\(P\le\frac{2}{3}+ab+bc+ac\)
Theo hệ quả quen thuộc của BĐT AM - GM :
\(ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(\Rightarrow P\le\frac{2}{3}+\frac{1}{3}=1\Rightarrow P_{max}=1\)
Vậy GTLN của P là 1 khi \(a=b=c=\frac{1}{3}\)
Để đồ thị hàm số đi qua điểm (1;-9) thì x = 1; y = -9
Thay x = 1; y = -9 vào y = (m - 2)x + 4, ta có:
-9 = (m - 2).1 +4
-9 = m - 2 + 4
-9 = m + 2
m = -9 - 2
m = -11
Vậy để hàm số đi qua điểm (1; -9) thì m = -11
thay x=1 y=3 vào hàm số y=(a-1)x+a
\(\Rightarrow3=a-1+a\)
\(\Leftrightarrow2a=4\)
\(\Leftrightarrow a=2\)
vậy a=2
Cho y ở đề bài làm gì trong khi biểu thức ở vế trái bên dưới ko có y?
\(f\left(x\right)=2x^2+x-6\)
Xét \(f\left(x\right)\) trên \(\left[0;\sqrt{3}\right]\)
\(-\frac{b}{2a}=-\frac{1}{4}\notin\left[0;\sqrt{3}\right]\)
\(f\left(0\right)=-6;f\left(\sqrt{3}\right)=\sqrt{3}\)
\(\Rightarrow f\left(x\right)_{min}=f\left(0\right)=-6\)
\(f\left(x\right)_{max}=f\left(\sqrt{3}\right)=\sqrt{3}\)
Bài này đăng nhiều trên OLM rồi, lời giải vắn tắt:
\(VT=\Sigma_{cyc}\frac{a}{1+b^2}=\Sigma_{cyc}\left(a-\frac{ab^2}{1+b^2}\right)=3-\Sigma_{cyc}\frac{ab^2}{1+b^2}\)
\(\ge3-\Sigma_{cyc}\frac{ab}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b = c = 1
Ta có: \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)(bđt cô - si)
Tương tự ta có: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\);\(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)
Cộng từng vế của các bđt trên:
\(\frac{a}{1+b^2}\)\(+\frac{b}{1+c^2}\)\(+\frac{c}{1+a^2}\)\(\ge a+b+c-\frac{ab+bc+ca}{2}\)
Dễ c/m: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow3^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow ab+bc+ca\le3\)
\(BĐT\ge3-\frac{3}{2}=\frac{3}{2}\)
hay \(\frac{a}{1+b^2}\)\(+\frac{b}{1+c^2}\)\(+\frac{c}{1+a^2}\)\(\ge\frac{3}{2}\)
(Dấu "="\(\Leftrightarrow a=b=1\))
\(A=\sqrt{\left(4+\sqrt{15}\right)\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}.\left(\sqrt{10}+\sqrt{6}\right)\)
\(A=\sqrt{\left(4+\sqrt{15}\right)\left(16-15\right)}.\left(\sqrt{2.5}+\sqrt{2.3}\right)\)
\(A=\sqrt{4+\sqrt{15}}.\sqrt{2}\left(\sqrt{5}+\sqrt{3}\right)\)
\(A=\sqrt{8+2\sqrt{3.5}}.\left(\sqrt{5}+\sqrt{3}\right)\)
\(A=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}+\sqrt{3}\right)\)
\(A=\left(\sqrt{5}+\sqrt{3}\right).\left(\sqrt{5}+\sqrt{3}\right)=\left(\sqrt{5}+\sqrt{3}\right)^2\)
\(A=8+2\sqrt{15}\)