2/3+x+1/4x=-22/27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 2 + 2² + 2³ + ... + 2²⁰
2A = 2² + 2³ + 2⁴ + ... + 2²¹
A = 2A - A
= (2² + 2³ + 2⁴ + ... + 2²¹) - (2 + 2² + 2² + ... + 2²⁰)
= 2²¹ - 2
= 2097150
A = 2 + 22 + 23 + ... + 220
2.A =2.(2 + 22 + 23 + ... + 220)
2A = 22 + 23 + 24 + ... + 221
2A - A = 22 + 23 + 24 + ... + 221 - (2 + 22 + 23 + ... + 220)
A = 22 + 23 + 24 + ... + 221 - 2 - 22 - ... - 220
A = (22 - 22) + (23 - 23) + ... + (221 - 2)
A = 0 + 0 + ... + 0 + 221 - 2
A = 221 - 2
(\(\dfrac{1}{5}\) + 2\(x\)).(3 - 2\(x\)) = 0
\(\left[{}\begin{matrix}\dfrac{1}{5}+2x=0\\3-2x=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-\dfrac{1}{5}\\2x=3\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{-1}{5}:2\\x=\dfrac{3}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{1}{10}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\){ - \(\dfrac{1}{10}\); \(\dfrac{3}{2}\)}
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{99^2}< \dfrac{1}{98\cdot99}=\dfrac{1}{98}-\dfrac{1}{99}\)
Do đó: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{99^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
=>\(S< 1-\dfrac{1}{99}\)
=>S<1
\(\dfrac{1}{2^2}>\dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{3^2}>\dfrac{1}{3\cdot4}=\dfrac{1}{3}-\dfrac{1}{4}\)
...
\(\dfrac{1}{99^2}>\dfrac{1}{99\cdot100}=\dfrac{1}{99}-\dfrac{1}{100}\)
Do đó: \(S>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=>\(S>\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)
Do đó: \(\dfrac{49}{100}< S< 1\)
c: \(\dfrac{5\cdot4^6\cdot9^4-3^9\cdot\left(-8\right)^4}{4\cdot2^{13}\cdot3^8+2\cdot8^4\cdot\left(-27\right)^3}\)
\(=\dfrac{5\cdot2^{12}\cdot3^8-3^9\cdot2^{12}}{2^{15}\cdot3^8-2^{13}\cdot3^9}\)
\(=\dfrac{2^{12}\cdot3^8\left(5-3\right)}{2^{13}\cdot3^8\left(2^2-3\right)}=\dfrac{2^{13}}{2^{13}}=1\)
\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{55^2}< \dfrac{1}{54\cdot55}=\dfrac{1}{54}-\dfrac{1}{55}\)
Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{55^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{54}-\dfrac{1}{55}\)
=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{55^2}< 1\)
=>\(\dfrac{4}{2^2}+\dfrac{4}{3^2}+...+\dfrac{4}{55^2}< 4\)
\(\dfrac{x-1}{4}=\dfrac{2}{x}\)
=>\(x\left(x-1\right)=2\cdot4\)
=>\(x^2-x-8=0\)(1)
\(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-8\right)=1+32=33>0\)
Do đó: Phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{1-\sqrt{33}}{2}\\x_2=\dfrac{1+\sqrt{33}}{2}\end{matrix}\right.\)
Lời giải:
\(S=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+....+\frac{99}{3^{99}}-\frac{100}{3^{100}}\\
3S=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+....+\frac{99}{3^{98}}-\frac{100}{3^{99}}\\
\Rightarrow S+3S=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow 4S+\frac{100}{3^{100}}=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...-\frac{1}{3^{99}}\)
\(3(4S+\frac{100}{3^{100}})=3-1+\frac{1}{3}-\frac{1}{3^2}+....-\frac{1}{3^{98}}\)
\(\Rightarrow 4(4S+\frac{100}{3^{100}})=3-\frac{1}{3^{99}}\)
\(S=\frac{3}{16}-\frac{1}{16.3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}< \frac{1}{5}\)
\(C=\dfrac{5}{2.4}+\dfrac{5}{4.6}+\dfrac{5}{6.8}+...+\dfrac{5}{48.50}\)
Đặt \(C=\dfrac{5}{2}.\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{48.50}\right)\)
\(C=\dfrac{5}{2}.\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(C=\dfrac{5}{2}.\left(\dfrac{1}{2}-\dfrac{1}{50}\right)\)
\(C=\dfrac{5}{2}.\left(\dfrac{25}{50}-\dfrac{1}{50}\right)\)
\(C=\dfrac{5}{2}.\dfrac{24}{50}\)
\(C=\dfrac{12}{10}=\dfrac{6}{5}\)
Vậy \(C=\dfrac{6}{5}\)
\(3\left(1-\dfrac{1}{2}\right)+5\left(x+\dfrac{3}{5}\right)=-x+\dfrac{1}{5}\)
=>\(\dfrac{3}{2}+5x+3=-x+\dfrac{1}{5}\)
=>\(5x+4,5=-x+0,2\)
=>6x=-4,3
=>\(x=-\dfrac{43}{60}\)
\(\dfrac{2}{3}\) + \(x+\dfrac{1}{4}\)\(x\) = - \(\dfrac{22}{27}\)
\(x+\dfrac{1}{4}x\) = - \(\dfrac{22}{27}\) - \(\dfrac{2}{3}\)
\(\dfrac{5}{4}x\) = - \(\dfrac{40}{27}\)
\(x=-\dfrac{40}{27}:\dfrac{5}{4}\)
\(x=-\dfrac{32}{27}\)
Vậy \(x=-\dfrac{32}{27}\)