B. x.y=360 va boi chung nho nhat(x,y)=60
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
11 x 11 = 121
111 x 111 = 12321
Vậy ta đã có cách tính nhan , Vậy tương tự có :
1 111 111 . 1 111 111 = 1234567654321
x + 48 - 2 = -x + 4 + 52
x + x = 4 + 52 - 48 + 2
2x = 10
x = 10 : 2
x = 5
a^7-a=a(a^6-1)
=a(a^3+1)(a^3-1)
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1)
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1)
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1)
+7a (a-1) (a+1) (a^2+a-1)
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
+7a (a-1) (a+1) (a^2+a-1)
+7a (a-1) (a+1) (a^2-a-6)
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7)
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7
ta có: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)]
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. ( vì trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7 nên k các số đó chia hết cho 7)
Tớ không biết có đúng không nữa :
a^7-a=a(a^6-1)
=a(a^3+1)(a^3-1)
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1)
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1)
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1)
+7a (a-1) (a+1) (a^2+a-1)
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
+7a (a-1) (a+1) (a^2+a-1)
+7a (a-1) (a+1) (a^2-a-6)
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7)
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7
ta có: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7)
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)]
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. ( vì trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7 nên k các số đó chia hết cho 7)
Vì ƯCLN(a;b) = 20
Nên a=20x và b= 20y với x < y và ƯC (x;y) =1
a.b=ƯCLN (a,b) . BCNN(a;b) = 20.420= 8400
a.b= 20x . 20y= 400xy = 8400
xy = 8400 ÷ 400
xy = 21 với ƯC (x;y) =1
Vì x < y nên x = 1 và y= 21
x= 3 và y = 7
Vây a = 20x = 20.1=20
b = 20y = 20.21 =420
Vậy a = 20x = 20.3= 60
b = 20y = 20.7 = 140
\(a.\frac{1}{2^{300}}=\frac{1}{\left(2^3\right)^{100}}=\frac{1}{8^{100}}\)
\(\frac{1}{3^{200}}=\frac{1}{\left(3^2\right)^{100}}=\frac{1}{9^{100}}\)
\(\text{Vì }\frac{1}{8}>\frac{1}{9}\Rightarrow\frac{1}{\left(2^3\right)^{100}}>\frac{1}{\left(3^2\right)^{100}}\Rightarrow\frac{1}{2^{300}}>\frac{1}{3^{200}}\)
\(b.\frac{1}{5^{199}}:\text{Giữ nguyên}\)
\(\frac{1}{3^{200}}=\frac{1}{3^{199}\cdot3}\)
\(\frac{1}{5^{199}}< \frac{1}{3^{199}\cdot3}\Rightarrow\frac{1}{5^{199}}< \frac{1}{3^{200}}\)
2 bài dưới bn làm tương tự nhé
a)AH > AK => H nằm giữa A và K =>AH + HK = AK => 3 + HK = 7 => HK = 7 - 3 => HK = 4cm
b) HK=4cm(phần a). E là trung diểm của HK => E = \(\frac{1}{2}\)HK => EK = \(\frac{4}{2}\)= 2cm
AK=7cm(đề bài) EK = 2cm; E thuộc HK; AK> EK => E nằm giữa K và A => AE + EK = AK
=> AE + 2 = 7 => AE = 7 - 2 => AE = 5 cm
c)Hai tia KE và KF đối nhau => K nằm giữa E và F => EK + KF = EF
=> 2 + 2 = EF => EF = 2 + 2 => EF = 4 cm
Ta có: A=40+41+42+...+499
=>A=(40+41)+(42+43)+...+(498+499)
=>A=(1+4)+42.(1+4)+...+498.(1+4)
=>A=5+42.5+...+498.5
=>A=(1+42+...+498).5 chia hết cho 5
=>A chia hết cho 5