Chứng tỏ rằng:
a. 4x2 - 12x + 15 > 0 vs mọi x
b. 6x - x2 - 10 < 0 vs mọi x
Giải giúp mình, cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi gđ của ED và HA là O . Ta có:
tam giác MEH cân => góc HEM=MHE
tam giác OEH cân => góc OEH=OHE
mà góc OHE+MHE=90 độ
=> góc HEM+OEH=90 độ
=> EM vuông góc với ED
DN vuông góc với ED => DEMN là hình thang vuông
a. Ta có:
MG//AD (gt)
KC//AD (gt)
=> MG//KC.
b.
c. Ta có: AD//KC (gt)
=> góc DAC = góc ACK
Mà góc DAC = góc DAB (AD là phân giác)
=> Góc ACK = góc DAB .
Mà góc DAB = góc AKC (AD//KC)
=> Góc ACK = góc AKC.
=> Tam giác AKC cân tại A.
Ta thấy: \(2017^{2016}\equiv1\)(mod 6)
Từ đó: (1 <= i <= k) \(\text{Σ}n_i\equiv1\)(mod 6)
Dễ chứng minh: \(\left(6k+m\right)^3\equiv m\equiv6k+m\)(mod 6) với 0<=m<=6
Từ đó ta có: \(x^3\equiv x\)(mod 6) với x là số tự nhiên
Vậy \(\text{Σ}n_i^3\equiv\text{Σ}n_i\equiv1\)(mod 6)
Vậy \(\text{Σ}n_i^3\)chia 6 dư 1
ta có: \(N=2017^{2016}\)
xét \(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)\)là tích 3 số nguyên liên tiếp nên a3-a chia hết cho 6 với mọi a
đặt N=\(n_1+n_2+...+n_k=2017^{2016}\)
\(\Rightarrow S-N=\left(n_1^5+n_2^3+....+n_k^3\right)-\left(n_1+....+n_k\right)=\left(n_1^3-n_1\right)+\left(n_2^3-n_2\right)+....+\left(n_k^3-n_k\right)\)
\(\Rightarrow S-N⋮6\)
=> S và N cùng số dư khi chia cho 6
thấy 2017 chia 6 dư 1
20172016 chia 6 dư 1 => N chia 6 dư 1
=> S chia 6 dư 1
ta có \(y^3-x^3=2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\Rightarrow y>x\)
\(\left(x+2\right)^3-y^3=4x^2+9x+6=\left(2x+\frac{9}{4}\right)^2+\frac{15}{16}>0\Rightarrow y< x+2\)
Vậy x<y<x+2 mà x,y thuộc Z => y=x+1
thay y=x+1 vào phương trình ta được:
\(x^3+2x^2+3x+2=\left(x+1\right)^3\)
\(\Leftrightarrow x^3+2x^2+3x+2=x^3+3x^3+3x+1\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
với x=1 thì y=x+1=2
với x=-1 thì y=x+1=0
Vậy phương trình đã cho có 2 nghiệm (x;y)=(1;2);(-1;0)
Bài này không có điều kiện x, y nhưng ít nhất là x, y là số nguyên nhé!
+) Ta thấy x = 0 không có y nguyên thỏa mãn
+)\(\left(x+1\right)^3=x^3+3x^2+3x+1\ge x^3+2x^2+3x+2>x^3\)
Mà \(x^3+2x^2+3x+2\)là lập phương của số tự nhiên nên ta có: \(x^3+2x^2+3x+2=x^3+3x^2+3x+1\)
Từ đây tìm được x=1, y=2
f(-1)=1-a+b; f(0)=b; f(1)=1+a+b
theo giả thiết có: \(\hept{\begin{cases}\frac{-1}{2}\le b\le\frac{1}{2}\left(1\right)\\\frac{-1}{2}\le1-a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le-a+b\le\frac{-1}{2}\left(2\right)\\\frac{-1}{2}\le1+a+b\le\frac{1}{2}\Leftrightarrow\frac{-3}{2}\le a+b\le\frac{-1}{2}\left(3\right)\end{cases}}\)
cộng theo từng vế của (2) và (3) có: \(\frac{-3}{2}\le b\le\frac{-1}{2}\left(4\right)\)
từ (1) và (4) ta có: \(b=\frac{-1}{2}\), thay vào (2) và (3) ta được a=0
vậy đa thức cần tìm là \(f\left(x\right)=x^2-\frac{1}{2}\)
+)\(\left|f\left(x\right)\right|\le\frac{1}{2}\Leftrightarrow-\frac{1}{2}\le f\left(x\right)\le\frac{1}{2}\)
+)\(x^2+ax+b=x^2+2\cdot\frac{a}{2}\cdot x+b+\frac{a^2}{4}-\frac{a^2}{4}+b=\left(x+\frac{a}{2}\right)^2+b-\frac{a^2}{4}\)
\(\ge b-\frac{a^2}{4}=-\frac{1}{2}\)
+)\(f\left(x\right)\)có đồ thị quay lên nên đạt giá trị lớn nhất khi x=1 hoặc x=-1
+) Khi x=1 thì \(a+b+1=\frac{1}{2}\Leftrightarrow a+b=-\frac{1}{2}\)
+) Khi x=-1 thì \(b-a+1=\frac{1}{2}\Leftrightarrow b-a=-\frac{1}{2}\)
+) TH1: \(\hept{\begin{cases}a+b=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)
+) TH2: \(\hept{\begin{cases}b-a=-\frac{1}{2}\\b-\frac{a^2}{4}=-\frac{1}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=-\frac{1}{2}\end{cases}}}\)
Vậy a=0, b=1/2
P/s: Bài này mình không chắc chắn lắm nhé!
https://diendantoanhoc.net/topic/118096-t%C3%ACm-nghi%E1%BB%87m-nguy%C3%AAn-c%E1%BB%A7a-ph%C6%B0%C6%A1ng-tr%C3%ACnh-2x3-2y35xy10/
ta có \(2x^3-2y^3+5xy+1=0\Leftrightarrow2\left(x-y\right)\left|\left(x-y\right)^2+3xy\right|+5xy+1=0\)
đặt x-y=a, xy=b (a,b thuộc Z) ta được
\(2a\left(a^2+3b\right)+5a+1=0\Leftrightarrow2^3+6ab+5b+1=0\Leftrightarrow2a^3+1=-b\left(6a+5\right)\)
\(\Rightarrow\left(2a^3+1\right)⋮\left(6a+5\right)\left(b\inℤ\right)\)
\(\Rightarrow\left(216a^3+108\right)⋮\left(6a+5\right)\Leftrightarrow\left|\left(6a\right)^3+5^3-17\right|⋮\left(6a+5\right)\)
\(\Rightarrow17⋮\left(6a+5\right)\Rightarrow\left(6a+5\right)\in\left\{-17;-1;1;17\right\}\Rightarrow a\in\left\{-1;2\right\}\)
với a=-1 ta có b=-1 => xy=x-y=-1 (loại)
với a=2 ta có: b=-1 => xy=-1 và x-y=2 => x=1; y=-1
thử lại ta thấy x=1; y=-1 là nghiệm nguyên của phương trình
vậy nghiệm của phương trình là (x;y)=(1;-1)
\(ab=cd\Rightarrow\frac{a}{c}=\frac{d}{b}\)
Đặt \(\frac{a}{c}=\frac{d}{b}=k\Rightarrow\hept{\begin{cases}a=ck\\d=bk\end{cases}}\)
Khi đó : a2014 + b2014 + c2014 + d2014
= (ck)2014 + b2014 + c2014 + (bk)2014
= c2014(k2014 + 1) + b2014(k2014 + 1)
= (k2014 + 1)(c2014 + b2014) \(⋮\)(c2014 + b2014)
=> a2014 + b2014 + c2014 + d2014 là hợp số
trình bày theo cách khác
gọi ƯCLN (a,c)=m \(\Rightarrow\hept{\begin{cases}a=ma_1\\c=mc_1\end{cases}\left(a_1;c_1\inℤ\right),\left(a_1,c_1\right)=1}\)
vì a,b,c,d là số nguyên thỏa mãn ab=cd
\(\Rightarrow ma_1b=mc_1d\Leftrightarrow a_1b=c_1d\)nên \(a_1b⋮c_1\)
mà (a1;c1)=1 nên b chia hết cho c1 => b=nc1 => d=na1, do đó
\(a^{2014}+b^{2014}+c^{2014}+d^{2014}=\left(ma_1\right)^{2014}+\left(nc_1\right)^{2014}+\left(mc_1\right)^{2014}+\left(na_1\right)^{2014}\)
\(=a_1^{2014}\left(m^{2014}+n^{2014}\right)+c_1^{2014}\left(m^{2014}+n^{2014}\right)\)
\(=\left(m^{2014}+n^{2014}\right)\left(a_1^{2014}+c_1^{2014}\right)\)là hợp số
P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)
\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)
\(f\left(x\right)=x^4+8x^3+28x^2+48x-13\)
\(=\left(x^4+4x^3+7x^2\right)+\left(4x^3+16x^2+28x\right)+\left(5x^2+20x+35\right)-48\)
\(=x^2\left(x^2+4x+7\right)+4x\left(x^2+4x+7\right)+5\left(x^2+4x+7\right)-48\)
\(=\left(x^2+4x+7\right)\left(x^2+4x+5\right)-48\)
đặt t=\(x^2+4x+6\)khi đó g(t)=(t-1)(t+1)-48=t2-49=(t-7)(y+7)
vậy f(x)=(x2+4x-1)(x2+4x+13)
Trả lời:
Thay \(f\left(x\right)=0\), ta có:
\(0=x^4+8x^3+28x^2+48x-13\)
\(\Leftrightarrow-x^4-8x^3-28x^2-48x+13=0\)
\(\Leftrightarrow-x^4-4x^3-4x^3+x^2-16x^2-13x^2+4x-56x+13=0\)
\(\Leftrightarrow\left(-x^4-4x^3+x^2\right)+\left(-4x^3-16x^2+4x\right)+\left(-13x^2-56x+13\right)=0\)
\(\Leftrightarrow-x^2.\left(x^2+4x-1\right)-4x.\left(x^2+4x-1\right)-13.\left(x^2+4x-1\right)=0\)
\(\Leftrightarrow\left(-x^2-4x-13\right).\left(x^2+4x-1\right)=0\)
Vì \(-x^2-4x-13=-x^2-4x-4-9\)
\(=-\left(x^2+4x+4\right)-9\)
\(=-\left(x+2\right)^2-9< 0\forall x\)
\(\Rightarrow x^2+4x-1=0\)
\(\Leftrightarrow\left(x^2+4x+4\right)-5=0\)
\(\Leftrightarrow\left(x+2\right)^2=5=\left(\pm\sqrt{5}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=\sqrt{5}\\x+2=-\sqrt{5}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2+\sqrt{5}\\x=-2-\sqrt{5}\end{cases}}\)
Vậy đa thức có 2 nghiêm \(x\in\left\{-2+\sqrt{5},-2-\sqrt{5}\right\}\)
a.4x^2-12x+15 = 0; vô nghiệm vì vế trái = 4x^2-12x+15=(2x)^2-2.3.(2x)+3^2+6=(2x-3)^2+6>=6 nên vế trái>0
b) Ta có 6x - x2 - 10
= -x2 - 3x - 3x - 10
= -x(x + 3) - 3x - 9 - 1
= -x(x + 3) - 3(x + 3) - 1
= -(x + 3)(x + 3) - 1
= -(x + 3)2 - 1 = -[(x + 3)2 + 1]
Ta có \(\left(x+3\right)^2+1\ge\forall x\Rightarrow-\left[\left(x+3\right)^2+1\right]\le-1< 0\)
=> 6x - x2 - 10 < 0 \(\forall\)x