CMR
a) 7.5^2n + 12.6^n chia hết cho 19 ( n thuộc N)
b) 11^n+2 +12^2n+1 chia hết cho 133 ( n thuộc N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xài trò này chắc Oke :))
a)
Mình nghĩ là \(x^5+y^5\)nhó, nếu đề khác thì comment xuống mình nghĩ cách khác :p
\(49=\left(x+y\right)^2=x^2+y^2+2xy=25+2xy\Rightarrow xy=12\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)
\(=\left(x^2+y^2\right)\left(x+y\right)\left(x^2+y^2-xy\right)-x^2y^2\left(x+y\right)\)
\(=25\cdot7\cdot\left(25-12\right)-12^2\cdot7\)
\(=1267\)
b)
\(xy^6+x^6y=xy\left(x^5+y^5\right)=P\left(x^5+y^5\right)\)
Ta tính \(x^5+y^5\) theo S và P
Dễ có:
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)
\(=\left[\left(x+y\right)^2-2xy\right]\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]-S^2P\)
\(=\left(S^2-2P\right)\left(S^3-3SP\right)-S^2P\)
\(=S^5-5S^3P+2SP^2-S^2P\)
Chắc không nhầm lẫn gì ở việc tính toán =)))
Ta có : A = (12 - 22) + (32 - 42) + .... + (20032 - 20042) + 20052
= (1 - 2)(1 + 2) + (3 - 4).(3 + 4) + .... + (2003 - 2004).(2003 + 2004) + 20052
= -1(1 + 2 + 3 + 4 + .... + 2003 + 2004) + 20052
= -1.2004.(2004 + 1) : 2 + 20052
= -1002.2005 + 2005.2005
= 2005.1003 = 2011015
Ta có: n(n + 5) - (n - 3)(n + 2) = n2 + 5n - n2 + n + 6 = 6n + 6 = 6(n + 1) \(⋮\)6
n( n + 5 ) - ( n - 3 )( n + 2 ) = n2 + 5n - ( n2 - n - 6 ) = n2 + 5n - n2 + n + 6 = 6n + 6 \(⋮\)6 \(\forall x\inℤ\)( đpcm )
x=4 mình đoán nó là x+4 ( cạnh phím backspace ý )
-11x - 39 = ( x - 2 ) - ( x + 4 )
<=> -11x - 39 = x - 2 - x - 4
<=> -11x - 39 = -6
<=> -11x = 33
<=> x = 3
Ta có : -x.x - 8x = 26
=> -x.x - 4x - 4x - 16 = 10
=> -x(x + 4) - 4(x + 4) = 10
=> -(x + 4)2 = 10
=> \(x\in\varnothing\)
-x.x - 8x = 26
<=> -x2 - 8x - 16 = 10
<=> -x2 - 4x - 4x - 16 = 10
<=> -x( x + 4 ) - 4( x + 4 ) = 10
<=> ( -x - 4 )( x + 4 ) = 10
<=> -[( x + 4 )]( x + 4 ) = 10
<=> -( x + 4 )2 = 10
\(-\left(x+4\right)^2\le0\forall x\)=> -( x + 4 )2 = 10 * vô lí *
<=> x = \(\varnothing\)
Thế x = 3 , y = -5 vào biểu thức ta được :
a.3[ 3 - ( -5 ) ] + ( -5 )4( 3 - 5 )
= a.3.8 + 625.( -2 )
= 24a - 1250
Trả lời:
\(A=x.\left(x^2-y\right)-x^2.\left(x+y\right)+y.\left(x^2+x\right)\)
\(A=x^3-xy-x^3-x^2y+x^2y+xy\)
\(A=0\)
Vì A = 0 nên thay x= -85, y=31 thì A vẫn bằng 0
Vậy \(A=0\)
Gọi 3 số tự nhiên cần tìm là: u - 1; u; u + 1
Theo đề bài, ta có:
u(u - 1) + u(u + 1) + (u - 1)(u + 1) = 74
<=> u^2 - u + u^2 + u + u^2 - 1 = 74
<=> 3u^2 - 1 = 74
<=> 3u^2 = 74 + 1
<=> 3u^2 = 75
<=> u^2 = 25
<=> u = 5
Vậy: 3 số đó là: 4, 5, 6
Trả lời:
Gọi ba số tự nhiên liên tiếp cần tìm đó là \(x-1\); \(x\); \(x+1\) \(\left(x\inℕ^∗\right)\)
Tổng các tích của 2 trong ba số bằng 74
\(\Rightarrow\left(x-1\right).\left(x+1\right)+x.\left(x-1\right)+x.\left(x+1\right)=74\)
\(\Leftrightarrow x^2-1+x^2-x+x^2+x=74\)
\(\Leftrightarrow3x^2-1=74\)
\(\Leftrightarrow3x^2=75\)
\(\Leftrightarrow x^2=25\)
\(\Rightarrow x=5\left(TM\right)\)
\(\Rightarrow x-1=5-1=4\left(TM\right)\)
\(\Rightarrow x+1=5+1=6\left(TM\right)\)
Vậy ba số tự nhiên liên tiếp cần tìm là:\(4,5,6\)
a, 7 . 52n + 12 . 6n
= 7 . (52)n - 7 . 6n + 19 . 6n
= 7 . (25n - 6n) + 19 . 6n
= 7 . (25 - 6) . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
= 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
Vì 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) ⋮ 19 và 19 . 6n ⋮ 19
=> 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n ⋮ 19
=> 7 . 52n + 12 . 6n ⋮ 19
b, 11n + 2 + 122n + 1
= 121 . 11n + 144n . 12
= 133 . 11n - 12 . 11n + 144n . 12
= 133 . 11n + 12(144n - 11n)
= 133 . 11n + 12 . (144 - 11) . (144n - 1 - 144n - 2 . 11 + .... - 11n)
= 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n)
Vì 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133 và 133 . 11n ⋮ 133
=> 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133
=> 11n + 2 + 122n + 1 ⋮ 133
Bài làm :
a) 7 . 52n + 12 . 6n
= 7 . (52)n - 7 . 6n + 19 . 6n
= 7 . (25n - 6n) + 19 . 6n
= 7 . (25 - 6) . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
= 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n
Vì 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) ⋮ 19 và 19 . 6n ⋮ 19
=> 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n ⋮ 19
=> Điều phải chứng minh
b) 11n + 2 + 122n + 1
= 121 . 11n + 144n . 12
= 133 . 11n - 12 . 11n + 144n . 12
= 133 . 11n + 12(144n - 11n)
= 133 . 11n + 12 . (144 - 11) . (144n - 1 - 144n - 2 . 11 + .... - 11n)
= 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n)
Vì 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133 và 133 . 11n ⋮ 133
=> 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133
=> Điều phải chứng minh