Cho E=\(\dfrac{\sqrt{2}-\sqrt{1}}{1+\sqrt{2^2}}\)+\(\dfrac{\sqrt{3}-\sqrt{2}}{2+\sqrt{3^2}}\)+\(\dfrac{\sqrt{4}-\sqrt{3}}{3+\sqrt{4^2}}\)+...+\(\dfrac{\sqrt{2020}-\sqrt{2019}}{2019+\sqrt{2020^2}}\).So sánh E với\(\dfrac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Vì 2n+1;2n+2;2n+3 là ba số tự nhiên liên tiếp
nên \(\left(2n+1\right)\left(2n+2\right)\left(2n+3\right)⋮3\)
Ta có:
\(1+2+3+...+n\)
Số lượng số hạng là: `(n-1):1+1=n` (số hạng)
Tổng của dãy số là: `(n+1)*n/2`
Áp dụng ta có:
\(\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+....+\dfrac{1}{1+2+3+...+100}\\ =\dfrac{1}{\dfrac{3\cdot\left(3+1\right)}{2}}+\dfrac{1}{\dfrac{4\cdot\left(4+1\right)}{2}}+...+\dfrac{1}{\dfrac{100\cdot\left(100+1\right)}{2}}\\ =\dfrac{2}{3\cdot4}+\dfrac{2}{4\cdot5}+...+\dfrac{2}{100\cdot101}\\ =2\left(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{100\cdot101}\right)\\ =2\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}\right)\\ =2\left(\dfrac{1}{3}-\dfrac{1}{101}\right)\\ =2\cdot\dfrac{98}{303}\\ =\dfrac{196}{303}\)
Từ 2 đến 201 số lượng số hạng là: (201 - 2) : 1 + 1 = 200 (số hạng)
Số lượng cặp là: 200 : 2 = 100 (cặp)
1 - 2 + 3 - 4 + 5 - ... + 199 - 200 + 201
= 1 + (-2 + 3) + (-4 + 5) + ... + (-198 + 199) + (-200 + 201)
= 1 + 1 + 1 + ... + 1 + 1
= 1 + 100*1
= 1 + 100
= 101
\(D=4-4^2+4^3-4^4+...+4^{2024}\\ 4D=4^2-4^3+4^4-4^5+...+4^{2025}\\ 4D+D=\left(4^2-4^3+4^4-4^5+...+4^{2025}\right)+\left(4-4^2+4^3-4^4+...+4^{2024}\right)\\ 5D=4^{2025}+4\\ D=\dfrac{4^{2025}+4}{5}\)
\(g.x^3-3x^2+3x-1=0\\ \Leftrightarrow\left(x-1\right)^3=0\\ \Leftrightarrow x-1=0\\ \Leftrightarrow x=1\\ h.x\left(2x-7\right)-4x+14=0\\ \Leftrightarrow x\left(2x-7\right)-2\left(2x-7\right)=0\\ \Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=7\\x=2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\end{matrix}\right.\\ k.\left(2x-5\right)^2\left(x+2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=5\\x=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\end{matrix}\right.\\ l.x\left(2x-9\right)=3x\left(x-5\right)\\ \Leftrightarrow3x^2-15x-2x^2+9x=0\\ \Leftrightarrow x^2-6x=0\\ \Leftrightarrow x\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\\ m.\left(x^2-2x+1\right)-4=0\\ \Leftrightarrow\left(x-1\right)^2=2^2\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2+1=3\\x=-2+1=-1\end{matrix}\right.\)
a: (3x-2)(4x+5)=0
=>\(\left[{}\begin{matrix}3x-2=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{5}{4}\end{matrix}\right.\)
c: \(\left(4x+2\right)\left(x^2+1\right)=0\)
mà \(x^2+1>=1>0\forall x\)
nên 4x+2=0
=>4x=-2
=>\(x=-\dfrac{1}{2}\)
d: (2x+7)(x-5)(5x+1)=0
=>\(\left[{}\begin{matrix}2x+7=0\\x-5=0\\5x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=5\\x=-\dfrac{1}{5}\end{matrix}\right.\)
f: \(\left(x^2-4\right)\left(x-2\right)\left(3-2x\right)=0\)
=>\(\left(x-2\right)^2\cdot\left(x+2\right)\left(3-2x\right)=0\)
=>\(\left[{}\begin{matrix}x-2=0\\x+2=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)
Đặt:
\(A=1+3+3^2+...+3^{2023}\\ 3A=3+3^2+3^3+...+3^{2024}\\ 3A-A=\left(3+3^2+3^3+..+3^{2024}\right)-\left(1+3+3^2+...+3^{2023}\right)\\ 2A=3^{2024}-1\\ A=\dfrac{3^{2024}-1}{2}\)
`A =` \(1+3+3^2+...+3^{2023}\)
\(3A=3+3^2+3^3+...+3^{2024}\)
`3A - A =` \(\left(3+3^2+3^3+...+3^{2024}\right)-\left(1+3+3^2+...+3^{2023}\right)\)
`2A =` \(3^{2024}-1\)
`A =` \(\dfrac{3^{2024}-1}{2}\)
\(\left(4x+2\right)\left(x^2+1\right)=0\)(1)
Ta có: `x^2>=0` với mọi x
`=>x^2+1>=1>0` với mọi x
`=>x^2+1≠0`
\(\left(1\right)\Leftrightarrow4x+2=0\\ \Leftrightarrow4x=-2\\ \Leftrightarrow x=-\dfrac{2}{4}=-\dfrac{1}{2}\)
`(4x + 2)(x^2 + 1) = 0`
Trường hợp 1:
`4x + 2 = 0`
`<=> 4x = -2`
`<=> x =` \(-\dfrac{1}{2}\)
Trường hợp 2:
`x^2 + 1 = 0`
`<=> x^2 = -1` (Không tồn tại `x`)
Vậy `x =` \(-\dfrac{1}{2}\)
\(\dfrac{-5}{7}\cdot\dfrac{2}{11}+\dfrac{-5}{7}\cdot\dfrac{9}{14}+1\dfrac{5}{7}\\ =\dfrac{-5}{7}\cdot\dfrac{2}{11}+\dfrac{-5}{7}\cdot\dfrac{9}{14}+\dfrac{5}{7}+1\\ =\dfrac{5}{7}\cdot\left(\dfrac{-2}{11}+\dfrac{-9}{14}+1\right)+1\\ =\dfrac{5}{7}\cdot\dfrac{27}{154}+1\\ =\dfrac{135}{1078}+1\\ =\dfrac{1213}{1078}\)
Mẹ mua 1kg cam có giá là:
52000 : 2 = 26000 (đồng)
Ba mua 1kg cam có giá là:
87000 : 3 = 29000 (đồng)
Ta có: 29000 > 26000
=> Mẹ mua cam có giá rẻ hơn
ĐS: ...
Giá 1 kg cam mẹ mua được là:
`52000 : 2 = 26000` (đồng)
Giá 1kg cam ba mua được là:
`87000 : 3 = 29000` (đồng)
Ta có: `26000 < 29000` (đồng)
Nên mẹ mua cam giá rẻ hơn
Mỗi kh cam mẹ mua rẻ hơn mỗi kg cam của ba là:
`29000 - 26000 = 3000` (đồng)
Vậy ...