K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2019

Với n=0 thì \(A=1\) không là số nguyên tố

Với n=1 thì \(A=3\) là số nguyên tố

Với \(n\ge2\) ta có:

\(A=n^{2018}+n^{2017}+1\)

\(=\left(n^{2018}-n^2\right)+\left(n^{2017}-n\right)+\left(n^2+n+1\right)\)

\(=n^2\left(n^{2016}-1\right)+n\left(n^{2016}-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left[\left(n^3\right)^{672}-1\right]+n\left[\left(n^3\right)^{672}-1\right]+\left(n^2+n+1\right)\)

\(=n^2\left(n^3-1\right)\cdot A+n\left(n^3-1\right)\cdot B+n^2+n+1\)

\(=\left(n^2+n+1\right)\cdot A'+\left(n^2+n+1\right)\cdot B'+\left(n^2+n+1\right)\)

\(=\left(n^2+n+1\right)\left(A'+B'+1\right)\) là hợp số với \(\forall n\ge2\)

Mk chỉ viết hệ số của từng phương trình thôi :

1) 1: (3n23n2) : n :n

2) 1 : (3n+123n+12) : n : (n+1)

3) 1 : (3n123n−12) :n :(n-1)

4) 1 : (3n323n−32) : n : (n-3)

5) 2 : (3n+1) : 2 : (2n+2)

câu 9 cho 2 đường thẳng d y= -x+m+2 và d1 y=(m bình -2)x+3 tìm m d và d1 song songcâu 10 cho hai đường thẳng d bằng y trừ 3x công 2 và d phẩy y bằng ax+b tìm a và b  d phẩy đi qua A(âm 1,2)và song song dcâu 11 tìm m để đồ thị hàm số y=2x-1 và y=-x+m cắt nhau tại 1 điểm có hoành độ =2câu 12 tìm m để đường thẳng y=2x-5 và đường thẳng y =(m-2)x+m-2 cắt nhâu tại 1 điểm trên trục tung câu 13 viết pt...
Đọc tiếp

câu 9 cho 2 đường thẳng d y= -x+m+2 và d1 y=(m bình -2)x+3 tìm m d và d1 song song

câu 10 cho hai đường thẳng d bằng y trừ 3x công 2 và d phẩy y bằng ax+b tìm a và b  d phẩy đi qua A(âm 1,2)và song song d

câu 11 tìm m để đồ thị hàm số y=2x-1 và y=-x+m cắt nhau tại 1 điểm có hoành độ =2

câu 12 tìm m để đường thẳng y=2x-5 và đường thẳng y =(m-2)x+m-2 cắt nhâu tại 1 điểm trên trục tung 

câu 13 viết pt đường thẳng d đi qua điêm M( âm 2 ,0) và cắt tung độ =3

câu 14 xác định hàm số y =ax+b biết đồ thị hàm số song song với đường thẳng y= 1 phần 2 x +5vaf cắt trục tung tại điểm có hoành độ bằng -3

câu 15 xác định hàm số y=ã+b biết đồ thị hàm số song song với đường thẳng y=1 phần 2 x +5 cắt trục hoành tại điểm có hoành độ bằng 3

0
22 tháng 7 2021

a) Xét tam giác  ABC vuông tại A, có :
          ^B + ^C = 90 (định lý)
<=> ^B + 15 = 90 (Thay số)
<=> ^B =  75
Xét tam giác MBC, có MD vừa là đường trung trực, vừa là đường cao:
       MD là đường trung trực của BC
    =>MB=MC(t/c đường trung trực của đoạn thẳng)
    =>MBC cân tại M (dhnb)
    => ^MBC=15
Xét tam giác ABC, có:
     ^ABM + ^MBC = ^ABC(MB thuộc ABC)
  <=>^ABM + 15 = 75(Thay số)
 <=>^ABM = 60
 Xét tam giác ABM vuông tại A, có :
 ^ABM + ^AMB = 90 (Định lý)
<=>60+ ^AMB = 90
<=> ^AMB = 30 
=> AB = 1/2 BM (t/c tam giác vuông)
<=> 2AB = BM
lại có AB = c ; MB = MC (cmt) 
=> 2c = MC hay MC = 2c (đpcm)

22 tháng 7 2021

a) Xét tam giác ABC vuông tại A, có : ^B + ^C = 90 (định lý) <=> ^B + 15 = 90 (Thay số) <=> ^B = 75 Xét tam giác MBC, có MD vừa là đường trung trực, vừa là đường cao: MD là đường trung trực của BC =>MB=MC(t/c đường trung trực của đoạn thẳng) =>MBC cân tại M (dhnb) => ^MBC=15 Xét tam giác ABC, có: ^ABM + ^MBC = ^ABC(MB thuộc ABC) <=>^ABM + 15 = 75(Thay số) <=>^ABM = 60 Xét tam giác ABM vuông tại A, có : ^ABM + ^AMB = 90 (Định lý) <=>60+ ^AMB = 90 <=> ^AMB = 30 => AB = 1/2 BM (t/c tam giác vuông) <=> 2AB = BM lại có AB = c ; MB = MC (cmt) => 2c = MC hay MC = 2c (đpcm)

4 tháng 12 2019

Áp dụng BĐT Cô - si cho 3 số không âm:

\(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{a^3}{b^3}}+1\ge3\sqrt[3]{\sqrt{\frac{a^6}{b^6}}}=\frac{3a}{b}\)

\(\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{b^3}{c^3}}+1\ge3\sqrt[3]{\sqrt{\frac{b^6}{c^6}}}=\frac{3b}{c}\)

\(\sqrt{\frac{c^3}{a^3}}+\sqrt{\frac{c^3}{a^3}}+1\ge3\sqrt[3]{\sqrt{\frac{c^6}{a^6}}}=\frac{3c}{a}\)

Cộng vế theo vế ,ta được:

\(2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)+3\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)\(+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

\(\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)\(+3\)

\(\Rightarrow2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

\(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

Vậy \(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)(đpcm)

6 tháng 12 2019

Trâu bò chút!

Đặt \(\sqrt{\frac{a}{b}}=x;\sqrt{\frac{b}{c}}=y;\sqrt{\frac{c}{a}}=z\Rightarrow xyz=1\)

BĐT quy về chứng minh: \(x^3+y^3+z^3\ge x^2+y^2+z^2\)

Để ý rằng: \(x^3=\frac{\left(x-1\right)^2\left(2x+1\right)}{2}+\frac{3}{2}x^2-\frac{1}{2}\)

Từ đó ta có:  \(VT-VP=\Sigma_{cyc}\frac{\left(x-1\right)^2\left(2x+1\right)}{2}+\frac{1}{2}\left(\Sigma x^2-3\right)\)

\(\ge\Sigma_{cyc}\frac{\left(x-1\right)^2\left(2x+1\right)}{2}\ge0\)

P/s: Nếu thích troll người thì thế ngược lại các biến đã đặt ta tìm được:

\(VT-VP\ge\Sigma_{cyc}\frac{\left(a-b\right)^2\left(2\sqrt{a}+\sqrt{b}\right)}{2b\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)^2}\ge0\)