nếu cho CM= 2 dm , MD=35 dm . hỏi CD bằng bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(5-\dfrac{7}{8}+\dfrac{15}{-20}\)
\(=5-\dfrac{7}{8}-\dfrac{3}{4}\)
\(=\dfrac{5\cdot8-7-3\cdot2}{8}\)
\(=\dfrac{40-7-6}{8}=\dfrac{27}{8}\)
b: \(\dfrac{10}{-13}:\dfrac{-4}{13}\cdot\dfrac{11}{-10}\)
\(=-\dfrac{10}{13}\cdot\dfrac{13}{4}\cdot\dfrac{11}{10}\)
\(=-\dfrac{11}{4}\)
c: \(\dfrac{-3}{2}\cdot\dfrac{5}{2}+\dfrac{3}{-8}\)
\(=\dfrac{-15}{4}+\dfrac{-3}{8}\)
\(=\dfrac{-15\cdot2+\left(-3\right)}{8}=\dfrac{-33}{8}\)
d: \(\dfrac{7}{-8}-\dfrac{-4}{5}:\dfrac{3}{10}\)
\(=-\dfrac{7}{8}+\dfrac{4}{5}\cdot\dfrac{10}{3}\)
\(=-\dfrac{7}{8}+\dfrac{8}{3}\)
\(=\dfrac{-7\cdot3+8\cdot8}{24}=\dfrac{43}{24}\)
e: \(\dfrac{-5}{8}\cdot\dfrac{25}{111}+\dfrac{25}{111}\cdot\dfrac{3}{10}\)
\(=\dfrac{25}{111}\left(-\dfrac{5}{8}+\dfrac{3}{10}\right)\)
\(=\dfrac{25}{111}\cdot\dfrac{-25+12}{40}\)
\(=\dfrac{25}{40}\cdot\dfrac{-13}{111}=\dfrac{-5}{8}\cdot\dfrac{13}{111}=\dfrac{-65}{888}\)
Ta có: \(A=\dfrac{2023}{x^{2022}+2023}+2022\)
Lại có: \(x^{2022}\ge0\forall x\)
\(\Leftrightarrow x^{2022}+2023\ge2023\forall x\)
\(\Leftrightarrow\dfrac{1}{x^{2022}+2023}\le\dfrac{1}{2023}\forall x\)
\(\Leftrightarrow\dfrac{2023}{x^{2022}+2023}+2022\le\dfrac{2023}{2023}+2022=2023\forall x\)
\(\Leftrightarrow A\le2023\forall x\)
Dấu \("="\) xảy ra khi: \(x^{2022}=0\Leftrightarrow x=0\)
Vậy \(Max_A=2023\) tại \(x=0\).
Biểu thức �A lớn nhất khi và chỉ khi �2022+2023x2022+2023 nhỏ nhất.
Ta có: �2022≥0x2022≥0 với mọi �x. Dấu bằng xảy ra khi và chỉ khi �=0x=0.
Vậy khi �=0x=0, �A đạt giá trị lớn nhất bằng 20232023.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
=>BA=BE
Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBF}\) chung
Do đó: ΔBEF=ΔBAC
=>BF=BC
=>ΔBFC cân tại B
c: Ta có: ΔBFC cân tại B
mà BD là đường phân giác
nên BD là đường trung tuyến của ΔBCF
GT |
Δ���:�=90∘ΔABC:A=90∘ ��BD là phân giác của góc �B ��⊥��(�∈��)DE⊥BC(E∈AC) ��∩��={�}BA∩ED={F} ��∩��={�}BD∩FC={K} |
KL |
a) Δ���=Δ���ΔBAD=ΔBED. b) Δ���ΔBCF cân tại �B. c) ��BD là đường trung tuyesn của Δ���ΔBCF. |
a) Xét Δ���ΔBAD và Δ���ΔBED lần lượt vuông tại �A và �E.
��BD chung.
���^=���^ABD=EBD (��BD là tia phân giác).
Suy ra Δ���=Δ���ΔBAD=ΔBED (cạnh huyền - góc nhọn).
b) Vì Δ���=Δ���(�/�ΔBAD=ΔBED(c/m phần a) nên ��=��;��=��AD=ED;BA=BE (2)
Xét Δ���ΔAFD vuông tại �A và Δ���ΔECD vuông tại �E có:
��=��(���)AD=ED(cmt)
���^=���^ADF=EDC (đối đỉnh)
Suy ra Δ���=Δ���ΔAFD=ΔECD (cạnh góc vuông - góc nhọn)
Nên ��=��AF=EC (2).
Từ (1) và (2) suy ra ��+��=��+��AF+BA=BE+EC
Hay ��=��BF=BC
Vậy Δ���ΔBCF cân tại �B.
c) Giả sử ��BD kéo dài cắt ��FC tại �K
Xét Δ���ΔBKF và Δ���ΔBKC có:
��BK là cạnh chung
���^=���^KBF=KBC (Vì ��BD là phân giác của ���^ABC )
��=��BF=BC ( chứng minh phần �)b)
Suy ra Δ���=Δ���(ΔBKF=ΔBKC( c.g.c ))
Suy ra ��=��KF=KC (hai cạnh tương ứng)
Vậy ��BK hay ��BD là đường trung tuyến của Δ���ΔBCF.
a) P(x) = 2x³ - 3x + 5x² + 2 + x
= 2x³ + 5x² + (-3x + x) + 2
= 2x³ + 5x² - 2x + 2
Q(x) = -x³ - 3x² + 2x + 6 - 2x²
= -x³ + (-3x² - 2x²) + 2x + 6
= -x³ - 5x² + 2x + 6
b) P(x) + Q(x) = (2x³ + 5x² - 2x + 2) + (-x³ - 5x² + 2x + 6)
= 2x³ + 5x² - 2x + 2 - x³ - 5x² + 2x + 6
= (2x³ - x³) + (5x² - 5x²) + (-2x + 2x) + (2 + 6)
= x³ + 8
P(x) - Q(x) = (2x³ + 5x² - 2x + 2) - (-x³ - 5x² + 2x + 6)
= 2x³ + 5x² - 2x + 2 + x³ + 5x² - 2x - 6
= (2x³ + x³) + (5x² + 5x²) + (-2x - 2x) + (2 - 6)
= 3x³ + 10x² - 4x - 4
a) Sắp xếp �(�)P(x) và �(�)Q(x) theo lũy thừa giảm dần.
�(�)=2�3+5�2−2�+2P(x)=2x3+5x2−2x+2.
�(�)=−�3−5�2+2�+6Q(x)=−x3−5x2+2x+6.
b) �(�)+�(�)=�3+8P(x)+Q(x)=x3+8.
�(�)−�(�)=3�3+10�2−4�−4P(x)−Q(x)=3x3+10x2−4x−4.
a) Tập hợp M:
M={xanh; đỏ; vàng; da cam; tím; trắng; hồng}
b) Xác xuất để biêna cố trên xảy ra là:
`P=1/7`
a) Tập hợp �M gồm các kết quả có thể xảy ra khi bút màu được rút ra là:
�=M= {{ xanh, đỏ, vàng, da cam, tím, trắng, hồng }}.
b) Số phần tử của tập hợp �M là 77.
Xác suất biến cố "Màu được rút ra là vàng" là: 1771
\(\dfrac{77}{25}\) là phân số tối giản rồi, không thể rút gọn được nữa bạn nhé.
a) Sửa: \(\dfrac{x-2}{x+2}+\dfrac{x}{2-x}+\dfrac{8}{x^2-4}\left(x\ne\pm2\right)\)
\(=\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x}{x-2}+\dfrac{8}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-4x+4+8}{\left(x+2\right)\left(x-2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-4x+12-x^2-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{-6x+12}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{-6\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{-6}{x+2}\)
b) \(\dfrac{x}{x-2}+\dfrac{2-x}{x+2}+\dfrac{12-10x}{x^2-4}\left(x\ne\pm2\right)\)
\(=\dfrac{x\left(x+2\right)}{\left(x+2\right)\left(x+2\right)}-\dfrac{x-2}{x+2}+\dfrac{12-10x}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x^2+2x+12-10x}{\left(x+2\right)\left(x-2\right)}-\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-8x+12-x^2+4x-4}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{-4x+8}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{-4\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{-4}{x-2}\)
c) \(C=\dfrac{2x}{x+3}+\dfrac{2}{x-3}+\dfrac{x^2-x+6}{9-x^2}\left(x\ne\pm3\right)\)
\(C=\dfrac{2x}{x+3}+\dfrac{2}{x-3}-\dfrac{x^2-x+6}{x^2-9}\)
\(C=\dfrac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2-x+6}{\left(x+3\right)\left(x-3\right)}\)
\(C=\dfrac{2x^2-6x+2x+6-x^2+x-6}{\left(x+3\right)\left(x-3\right)}\)
\(C=\dfrac{x^2-3x}{\left(x+3\right)\left(x-3\right)}\)
\(C=\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(C=\dfrac{x}{x+3}\)
a) Diện tích xung quanh là:
\(\left(3,2+1,3\right)\times2\times0,5=4,5\left(m^2\right)\)
Diện tích toàn phần là:
\(4,5+2\times3,2\times1,3=12,82\left(m^2\right)\)
b) Diện tích xung quanh là:
\(\left(3+22\right)\times2\times8=400\left(dm^2\right)\)
Diện tích toàn phần là:
\(400+2\times3\times22=532\left(dm^2\right)\)
Đổi: 1 giờ 25 phút = 85 phút
Trung bình mỗi phút cô Oanh đi được quãng đường dài là:
5100 : 85 = 60 (m)
Đs:
CD bằng số đề-xi-mét là:
2+35=37 (dm)
Đáp số: 37 dm